ارائه یک مدل فازی برای مدل سازی نفوذ آب در خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کاندید دکتری آبیاری و زهکشی دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب دانشگاه فردوسی مشهد

چکیده

مدل سازی نفوذ آب در خاک غیر اشباع معمولاً بر اساس حل عددی معادله ریچاردز انجام می‌گیرد. پیچیدگی‌های موجود در حل عددی، در نظر نگرفتن عدم قطعیت پارامترها، و دشواری‌های کاربرد این شیوه در مدل‌سازی حرکت آب در خاک در مقیاس بزرگ (مزرعه‌ای و ناحیه‌ای) توجه پژوهشگران را به سایر روش ها جلب کرده است. در این پژوهش مدل فازی مبتنی بر قانون برای بررسی نفوذ آب در خاک غیر اشباع بدون کشت گیاهی ارائه شده است. قوانین مدل فازی با استفاده از مجموعه‌های آموزشی بزرگ به دست آمده از حل معادله ریچاردز با استفاده از مدل عددی Hydrus استخراج شد. تعداد 49 قانون فازی با توجه به 7 کلاس رطوبتی تعیین شده برای خاک، در مدل فازی عمل می‌کنند. مدل فازی مبتنی بر قانون تولید شده قادر به شبیه‌سازی شار (شدت جریان) در هر گام زمانی است و با استفاده از معادله پیوستگی مقدار رطوبت در کل خاکرخ در گام زمانی بعدی محاسبه می‌شود. نتایج آماری نشان از دقت بالای مدل در تخمین میزان شار در ستون خاک و مقدار رطوبت پیش‌بینی شده برای سه بافت خاک لوم، شن و سیلت در گام‌های مختلف زمانی دارد (میانگین NRMSE 84/3 درصد). این مدل فازی در جبهه پیشروی در خاکرخ از کمترین دقت برخوردار است و در ناحیه اشباع تطابق حداکثری را با نتایج حل عددی دارد. به دلیل تکراری بودن فرایند محاسبه رطوبت در هر گام زمانی (t) و جایگزین کردن آن به عنوان رطوبت اولیه در گام زمانی t+∆t انجام موازنه جرمی باعث کنترل خطای تجمعی در مدل در گام‌های زمانی بزرگتر شد.

کلیدواژه‌ها


عنوان مقاله [English]

A Fuzzy Model for Simulation of Water Infiltration into the Soil

نویسندگان [English]

  • marziye Khorami 1
  • Bijan Ghahraman 2
  • Kamran Davary 2
1 PhD Candidate in Irrigation and Drainage, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Infiltration modeling in unsaturated zone is usually based on the numerical solution of Richards equation. Complexity in numerical solution, disregard of parameter’s uncertainties, and difficulty in application of this model at large scale attracted the attention of researchers to other approaches. In this research, a rule-based fuzzy model for infiltration in the soil matrix is presented. The rules were derived from a large generated training sets obtained by numerical solution of Richards equation by using Hydrus model. Forty-nine fuzzy rules based on 7 moisture classes were applied in fuzzy model. Fuzzy rule based model could simulate flux in any time step, and by using continuity equation could calculate moisture in any depth in soil profile. Results showed good accuracy for both flux and moisture predictions for loam, sand, and silt soil textures in any time steps (average NRMSE =3.84). Model performance had the best result in saturated zone and a poor result for wetting front. Because of duplicate process of calculating moisture in any time step and replacing it as an initial moisture for t+∆t time step, mass balance could prevent cumulative error for the large time steps. 

کلیدواژه‌ها [English]

  • Unsaturated soil
  • Richards equation
  • Hydrus Model
  1. خرمی، م و قهرمان، ب. 1396. بررسی عدم قطعیت پارامترهای خاک بر عدم قطعیت پروفیل رطوبتی با استفاده از نظریه‌ی مجموعه‌های فازی. تحقیقات منابع آب ایران. شماره 1. بهار 1396. 126-138 .
  2. خوشنودیزدی، ا و قهرمان، ب. 1383.  بررسی روابط بافت خاک و پارامتر مقیاس بندی برای برآورد رطوبت خاک.  تحقیقات مهندسی کشاورزی. پاییز 1383.
  3. کوره پزان دزفولی، ا. 1386 . اصول و تئوری مجموعه‌های فازی و کاربرد آن در مدلسازی مسایل مهندسی آب. انتشارات جهاد دانشگاهی واحد صنعتی امیر کبیر.
  4. Arya, L M. Leij, F J. Van Genuchten, M Th. Shouse, P J. 1999. Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63:510-519.
  5. Bardossy. A., and Disse., M. 1993, Fuzzy rule-based models for infiltration. water resources research. NO2. 373-382.
  6. Bardossy. A.,Bronster. A, and Merz. B., 1995, 1-,2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach, advances in water resources, No. 4, 237-251.
  7. Chen, S., Mao, X and Wang, Ch., 2019. A modified green-ampt model and parameter determination for water infiltration in fine-textured soil with coarse interlayer. Water 11(4):787. 
  8. Farthing, M, W and Ogden, F. L. 2017. Numerical solution of Richards’ Equation: A review of advances and challenges. SSSAJ. V81. N 6. 1257-1269.
  9. Green , W. H., and G. A. Ampt, Studies of soil physics, 1 , The flow of air and water through soils, J. Agric. Sci., 4, 1-24, 1911.
  10. Holtan, H. N., A concept fo infiltration estimates in watershed engineering, publ. U.S. Dep. Agric., ARS 41-51, 25 pp., 1961.
  11. Horton, R.E. 1940. An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 5: 399–417.
  12. Kostiakov, A.N. 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Transactions congress international society for soil science, 6th, Moscow, Part A: 17–21.
  13. Mubarak, I., Mailhol, J.C.,R. Angulo Jaramillo, P. Ruelle, Pierre Boivin, et al..2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, Elsevier, 150, 158 -165.
  14. Ozkan, I and Turksen, I.B, 2014. Uncertainty and fuzzy decisions, chapter 2. Springer Science, Busines Media Dordrecht.
  15. Philip, J. R., The theory of infiltration. Advances in hudroscience. Academic Press, New York, NY, USA, 1969.
  16. Richards, L. A.,1931. Capillary conduction of liquids through porous media, physics, I, 318-33.
  17. Rinaldy, M., N. Losavio and Flagella.Z. 2003. Evaluation of OILCROP-SUN model for sunflower in southern italy. Agricultural Systems. 78: 17-30.
  18. Sadeghi M., Ghahraman B., Ziaei A.N., Davary K., and Reichardt K. 2012b. Invariant solutions of Richard’s equation for water movement in dissimilar soils. Soil Sci. Soc. Am. J. 76:1–9.
  19. Schulz and Huwe.1997. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal of Hydrology 201. 211-229.
  20. Schulz, K and Huwe, B .1999. Uncertainty and sensitivity analysis of water transport modelling in a layered soil profile using fuzzy set theory. Journal of Hydroinformatics. 01.2.
  21. Simunek, J,.Van Genuckten, M.Th., and Sejna, M. 2006. The Hydrus software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably– saturated media. Technical Manual. PC Progress, Prague, Czech Republic.
  22. Subia, S.R. Ingber, M.S. Martinez. 1994. A three –dimensional boundary element method for steady unsaturated quasi-linear flow in poros media. Water Resources Research. Volume 30, Issue 7.
  23. Tracy.F.T (2011). Analytical and numerical solutions of Richards' equation with discussions on relative hydraulic conductivity, hydraulic conductivity -Issues, determination and applications, Prof. Lakshmanan Elango (Ed.), ISBN: 978-953-307-288-3.
  24. Tyler, S W. Wheatcraft, S W. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53:987-996.
  25. Verma, P, Singh, P. George, K. V. Sing, H. V. Devotta, S. Singh, R.N. 2009. Uncertainty analysis of transport of water and pesticide in an unsaturated layered soil profile using fuzzy set theory. Applied mathematical modelling 33. 770-782.
  26. Wu, Q and Mencer, O. 2009. Evaluation sampling based hotspot detection. 2009. Architecture of computing systems– ARCS. Lecture notes in computer science, vol 5455. Springer, Berlin, Heidelberg.
  27. Zadeh, L. A., 1965. Fuzzy sets, Inf. Control, 8, 338-353.