ارزیابی نیاز فسفر گندم در خاک‌های آهکی با استفاده از هم‌دما های جذب فسفر

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار پژوهش موسسه تحقیقات خاک و آب

چکیده

جذب فسفر در خاک­ها یکی از فرآیندهای کلیدی در تعیین قابلیت جذب آن برای گیاهان می­باشد. تحقیقات گسترده نشان داده است که فسفر توصیه شده را می­توان بر اساس ویژگی­های جذب خاک بهبود بخشید. در این مطالعه هم­دماهای جذب فسفر برای خاک­های مختلف که تحت کشت گندم بودند رسم گردید. از منحنی­های جذب برای اضافه کردن کود فسفر به خاک گلدان­ها بطوریکه غلظت تعادلی فسفر در محلول خاک از 075/0 تا 2/1 میلی گرم در لیتر تغییر کند، استفاده شد. گیاه گندم به مدت شش هفته رشد داده شد. رفتار جذب فسفر به خوبی بوسیله معادله های فروندلیچ و ون­های توضیح داده شدند (997/0-927/0R2=  و 999/0-949/0R2= به ترتیب برای معادله­های فروندلیچ و ون­های). در اکثر خاک­ها هنگامیکه فسفر در محلول خاک  در 3/0 میلی گرم در لیتر تنظیم شد، عملکرد به بیش از 85 درصد ماکزیمم رسید. نیاز استاندارد فسفر (SPR[1]) برای خاک­ها مورد مطالعه، که به صورت مقدار فسفر جذب شده در غلظت تعادلی  3/0 میلی گرم در لیتر تعریف شد، دامنه ای بین 157-19  میلی­گرم در کیلوگرم به دست آمد. همبستگی خطی بین فسفر اضافه شده و فسفر استخراج شده با روش اولسن در تمام خاک­ها بدست آمد که R2 آن بین 96/0 تا 99/0 با میانگین 98/0 بود و شیب خط برازش شده به داده­های فسفر استخراج شده در مقابل فسفر اضافه شده از 23/0 تا 47/0 تغییر کرد که متوسط آن 38/0 بود. بازیافت فسفر از 12 تا 50 درصد تغییر کرد و میانگین آن 37 در صد بود. این بدان معناست که حدودا 63 درصد فسفر اضافه شده بصورت غیر قابل استفاده در آمده است. تفاوت معنی داری بین میانگین بازیافت در تیمارهای مختلف وجود نداشت. سطح بحرانی فسفر برای عصاره گیر بی­کربنات سدیم (روش اولسن) به روش ترسیمی و آماری کیت – نلسن برابر با 13 میلی گرم بر کیلو گرم خاک تعیین گردید.
 
[1]. Standard Phosphorus Requirement

عنوان مقاله [English]

Evaluating Phosphorus Requirement of Wheat in Calcareous Soils by Phosphorus Sorption Isotherm

نویسندگان [English]

  • K. Shahbazi
  • M. H. Davoodi
Assistant Professor Soil and Water ResearchInstitute
چکیده [English]

Phosphorus adsorption in soils is one of the most important processes that determine its availability to plants. Many studies have revealed that phosphorus fertilizer recommendation can be improved based on soil adsorption properties. Phosphorus adsorption isotherms were constructed for different soils under wheat crop. The sorption curves were used as a basis for fertilizing soils in pots suchthat phosphate in soil solutions varied from about 0.075 to 1.2 mgl-1. Wheat was grown for 6 weeks.  Adsorption data were successfully described usingFreundlich and Van Huay sorption models (R2= 0.927-0.997 and R2= 0.949-0.999 for Ferundlich and Van Huay models, respectively). In most soils, yield approached more than 85% of the maximum when phosphate in the soil solution was adjusted to 0.3 mgl-1.The standard phosphorus requirement varied from 19 to 157 mgkg-1. There was linear relation between added P and bicarbonate- extractable P(Olsen P) in all soils(R2=0.96-0.99, andmean of0.98) and the slope of this linear equation (by plotting added P against Olsen P)varied from 0.23 to 0.47  with 0.38 as an average. The recovery of phosphorus varied from 12 to 50% with 37% as an average. This means that 63% of the added P was unavailable. There was no significant difference between the mean recoveries in the different treatments. The phosphorus critical level for sodium bicarbonate extractant (Olsen P) based on was determined at 13 mg P kg-1 soil.

کلیدواژه‌ها [English]

  • Adsorption isotherm
  • Freundlich and Van Huay sorption models
  • Available phosphorus
  • Cate – Nelson procedure
  • Critical level
  1. اوستان، ش. و ح. توفیقی. 1383. برآورد فسفر قابل استفاده باقیمانده در برخی از خاکهای ایران. مجله علوم کشاورزی ایران. جلد ٣٥ ، شماره ٣،٥٣١-٥٤٠
  2. حسین پور، ع. و خ. عنایتضمیر. 1377. مشخصات جذب سطحی فسفر و رابطه آن با ویژگی­های خاک در شماری از خاک­های همدان.مجله علوم کشاورزی ایران. جلد29، شماره4،
  3. شهبازی ، ک.1386.تهیه بانک اطلاعات مکاندار حاصلخیزی خاک در کشور. گزارش نهایی، شماره1354، موسسه تحقیقات خاک و آب.
  4. شیروانی، م. و ح. شریعتمداری. 1381. استفاده از هم دماهای جذب در تعیین شاخص های ظرفیت بافری و نیاز استاندارد فسفر برخی خاک­های آهکی استان اصفهان. علوم و فنون کشاورزی و منابع طبیعی. جلد 6، شماره 1، 129-121.
  5. عطاردی، ب.، م. نادری.1388. تعیین عصاره­گیر مناسب و حد بحرانی فسفر برای سورگوم در خاک آهکی منطقه بیرجند. علوم و فنون کشاورزی و منابع طبیعی. سال سیزدهم. شماره 50، 145-133.
  6. فرقانی، ا. 1370. تعیین حد بحرانی فسفر برای گیاه ذرت در خاکهای آهکی منطقه اصفهان. پایان نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان.
  7. کریمیان، ن. 1372.تفسیر نتایج آزمون خاک بر اساس خصوصیات فیزیکی و شیمیایی. گزیده مقالات ارائه شده در سومین کنگره علوم خاک ایران. کرج76-65
  8. نوابی، ف..1377. تعیین نقطه بحرانی فسفر و پتاسیم برای محصول پنبه. وزارت جهاد کشاورزی، موسسه تحقیقات خاک و آب.
  9. Afif, E., A. Matar, & J. Torrent.1993. Availability of phosphate applied to calcareous soils of west Asia and North Africa. Soil Sci. Soc. Am. J. 57:756-760
  10. Al-Khateeb IK, Rajhan MJ, Asker SR. 1986. Phase equilibria and kinetics of orthophosphate in some Iraqi soils. Soil Sci 141:31 – 37.
  11. Allison, L. E. and C. D. Moodi. 1962. Carbonates. PP 1379-1396. In: C. A. Black et al. (ed), Methods of Soil Analysis. Part 2, Am. Soc Agron., Madison,WI.
  12. Amer F, Mahmoud AA, Sabet V (1985) Zeta potential and surface area of calcium carbonate as related to phosphate sorption. Soil Sci Soc Am J 49:1137–1142
  13. Asher, C. J., and J. F. Loneragan. 1967. Response of plants to phosphate concentration in solution culture I. Growth and phosphate concentration in solution culture. Soil Sci. 103:225-233.
  14. Barber, S. A. 1962. A diffusion and mass flow concept of soil nutrient availability. Soil Sci. 94:409-412.
  15. Barrow NJ. 1974. Effect of previous additions of phosphate on phosphate adsorption by soil. Soil Sci 118:82 – 89.
  16. Beckwith, R. S. 1964. Sorbed phosphate at standard supernatant concentration as an estimate of the phosphate needs of soils. Aust. J. Exp. Agr. And An Hus. 5: 52-58.
  17. Bertrand I, Holloway RE, Armstrong RD, McLaughlin MJ (2003) Chemical characteristics of phosphorus in alkaline soils from southern Australia. Aust J Soil Res 41:61–76
  18. Borrero, C., F. Pena, and J. Torrent. 1988. Phosphate sorption by calcium carbonate in some soils of the Mediterranean part of Spain. Geoderma, 42:261-269.
  19. Bouyoucos, G. J.1962. Hydrometer method improved for making particle size analysis of soils. Agron. J.54: 464-465
  20. Bramley RGV, Barrow NJ, Shaw TC (1992) The reaction between phosphate and dry soil. I. The effect of time, temperature and dryness. J Soil Sci 43:749–758
  21. Cassel, D. K. & D. R. Nielsen.1986. Field capacity and available water capacity. P. 901-926. In A. Klute(ed) Methods of soil analysis. Part 1, 2nd American Society of Agronomy, Madison, WI.
  22. Castro B, Torrent J (1998) Phosphate sorption by calcareous Vertisols and Inceptisols as evaluated from extended P-sorption curves. Eur J Soil Sci 49:661–667
  23. Cate, R. B., and L. A. Nelson. 1971. A simple statistical procedure for partitioning soil test correlation data into classes. Soil Sci. Soc. Amer. Proc. 35:658-660.
  24. Chapman, H. D. 1965. Cation exchange capacity. P.891-902.In C. A. Black et al. (ed). Methods of soil analysis, part 2, ASA, Madison,WI.
  25. Cole CV Olsen SR & Scott CO 1953. The nature of phosphate sorption by calcium carbonate. Soil Science Society of America Proceedings 17, 352 -353
  26. Essington, M.E. 2003. Soil and water chemistry: An integrative approach. CRC Press, Boca Raton, FL.
  27. Fitter AH, Sutton CD (1975) The use of the Freundlich isotherm for soil phosphate sorption data. J Soil Sci 26:241–246
  28. Fox, R.L., and E.J. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc. 34:902–907.
  29. Freeman JS, Rowell DL (1981) The adsorption and precipitation of phosphate onto calcite. J Soil Sci 32:75–84
  30. Griffin, R. A. and J. J. Jurinak. 1973. The interaction of phosphate with calcite. Soil Sci. Soc. Am. Proc. 37:847-850.
  31. Hamad ME, Rimmer DL, Syers JK (1992) Effect of iron oxide on phosphate sorption by calcite and calcareous soils. J Soil Sci 43:273–281
  32. Holford ICR, Mattingly GEG (1975a) The high-and low-energy phosphate adsorbing surfaces in calcareous soils. J Soil Sci 26:407–417
  33. Holford ICR, Mattingly GEG (1975b) Phosphate sorption by Jurassic oolitic limestones. Geoderma 13:257–264
  34. Jackman JM, Jones RC, Yost RS, Babock CJ (1997) Rietveld estimates of mineral percentages to predict phosphorous sorption by selected Hawaiian soils. Soil Sci Soc Am J 61:618–629
  35. Jalali M (2006) Soil phosphorus buffer coefficient as influenced by time and rate of P addition. Archives Agron Soil Sci 52:1–11.
  36. Jalali, M. 2007. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environ Geol. 53:365–374
  37. JalaliM, Kolahchi Z. 2004. Phosphorus supply characteristics of ten calcareous soils as influenced by different rates of phosphorus addition. Proceeding of the Agroenviron Congress; 2004 Oct; Udin, Italy.
  38. James, W. Bauder., J. S. Jacobsen and E. Skoglley. 1997. Effect of phosphorus soil test level on sorghum-sudangrass response to phosphorous fertilizer. Agron. J. 89:9-16.
  39. Javid S, Rowell DL. 2002. A laboratory study of the effect of time and temperature on the decline in Olsen P following phosphate addition to calcareous soils. Soil Use Manage 18:127 – 134.
  40. Johnston AE, Poulton PR, Syers JK. 2001. Phosphorous, potassium and sulfur cycles in agricultural soils. Proceeding No. 465 International Fertilizer Society, York. pp 1 – 44.
  41. Johnston AE. 2001. Principles of crop nutrition for sustainable food production. Proceeding No. 459. International Fertilizer Society, York. pp 1 – 38.
  42. Juo, A. S. R., and R. L. Fox. 1977. Phosphate sorption characteristics of some bench-mark soils of West Africa. Soil Sci. 124:370-376
  43. Karimian, N., and A. Ghanbari. 1990. Evaluation of different extractants for prediction of plant response to applied P fertilizer in highly calcareous soils. Abst. 10th World fert. Cong. CIEC p. 25.
  44. Kpomblekou-A, K., & M. A. Tabatabai.1997. Effect of cropping systems on quantity-intensity relationships of soil phosphorus. Soil Sci. 162:56-68.
  45. Kuo, S. 1996. Phosphorus. p.869-919. In D. Sparks (ed.) Methods of soil analysis. Part 3. 3nd ed. American Society of Agronomy, Madison, WI.
  46. Lalitha Janardhanan, L., and Samira H. Daroub. 2010. Phosphorus Sorption in Organic Soils in South Florida. Soil Sci. Soc. Am. J. 74:1597–1606
  47. Mallarino A. P. and A. M. Blakmer. 1992. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agron. J. 84:850-856.
  48. McCollum RE (1991) Build up and decline in soil phosphorous: 30-year trends on a typic umprabuult. Agron J 83:77–85
  49. McLean EO, Arscott TG, Hannan MA. 1983. An evaluation of soil solution and chemical extraction methods for assessing phosphorus availability to wheat plants grown in Ohio and Bangladesh soils. Commmun Soil Sci Plant Anal 14:1 – 13.
  50. Mead JA (1981) A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils. Aust J Soil Res 19:333–342
  51. Mehdi, A. A, R. W. Taylor and J. W. shuford.1990. Prediction of fertilizer phosphate requirement using the Langmuir adsoption maximum. Plant Soil. 122:267-270.
  52. Nelson, D.W., and L.E. Sommer. 1982. Total carbon, organic carbon, and organic matter. p.539-579. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc.Agron. Madison, WI.
  53. Olsen, S. R., and F. S. Watanabe. 1963. Diffusion of phosphorus as related to soil texture and plant uptake. Soil Sci. Soc. Amer. Proc. 27:648-653
  54. Ozanne, P. G. and T. C. Shaw. 1968. Advantages of the recently developed phosphate sorption test over the older extractant methods for soil phosphate. Int. Cong. Soil Sci. Trans. 2: 273-280
  55. Pant, H.K., and K.R. Reddy. 2001. Phosphorus sorption characteristics of estuarine soils under diffrent redox conditions. J. Environ. Qual. 30:1474–1480.
  56. Pena F, Torrent J (1990) Predicting phosphate sorption in soils of Mediterranean regions. Fertil Res 23:173–179
  57. Polyzopoulos NA, Keramidas VZ, Kiosse H (1985) Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Soil Sci Soc Am J 49:81–84
  58. Rhoades, J. D. 1996. Salinity: electrical conductivity and total dissolved solids. In: D. L. Sparks, (ed.), Methods of Soil Analysis. Part 3, chemical methods. SSSA, Madison, WI.
  59. Ryan, J., D. Curtin, & M. A. Cheeman. 1985 or 1985a. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Sci. Soc. Am. J. 49:74-76.
  60. Ryan, J., H. M. Hasan, M. Baasiri, and H. S Tabbara. 1985b. Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci. Soc. Am. J. 49: 1215-1220.
  61. Samadi, A. 2003. Predicting phosphate fertilizer requirement using sorption isotherm in selected calcareous soils of Western Azarbaijan province, Iran. Communication in soil science and plant analysis. Vol.34, Nos. 19 & 20, pp. 2885-2889.
  62. Samadi, A. and Gilkes, R.J. 1998. Forms of phosphorus in virgin and fertilized calcareous soils of Western Australia. Aust. J. Soil Res. 36:586-601.
  63. Sample, E. C, R. J. Soper, And G. J. Racz. 1980. Reaction of phosphate fertilizers in soils. P. 263-310. in F. E. Khasawneh et al.(ed) The role of phosphorus in agriculture. ASA. CSSA and SSSA, Madison. WI.
  64. Sanyal, S. K., and S. K. De Datta .1991.Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16:1-120.
  65. Sharpley AN, Ahuja LR. 1983. A diffusion interpretation of soil phosphorus desorption. Soil Sci 135:322 – 326.
  66. Sharpley AN, Jones CA, Gray C, Cole CV. 1984. A simplified soil and plant phosphorus model: Prediction of labile, organic, and sorbed phosphorus. Soil Sci Soc Am J 48:805 – 809.
  67. Sharpley, A. N., & S. J. Smith. 1985. Fractionation of inorganic and organic phosphorus in virgin and cultivated soils. Soil Sci. Soc. Am. J. 49:127-130.
  68. Sharpley, A. N., U. Singh, G. Uehara, and J. Kimble. 1989. Modeling soil and plant phosphorus dynamics in calcareous and highly weathered soils. Soil Sci. Soc. Am. J. 53:153-158.
  69. Singh B, Gilkes RJ (1991) Phosphorus sorption in relation to soil properties for the major soil types of south-western Australia. Aust J Soil Res 29:603–618
  70. Solis P, Torrent J (1989) Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Sci Soc Am J 53:456– 459
  71. Sparks, D.L. 2003. Environmental soil chemistry. Academic Press, San Diego.
  72. Torrent J, Schwertman U, Barrow V. 1992. Fast and slow phosphate sorption by goethite-rich natural minerals. Clays Clay Miner 40:14 – 21.
  73. Torrent, J., U. Schwertman, V. Barrow. 1994. Phosphate sorption by natural hematites. European Journal of Soil Science, 45: 45-51.
  74. S. Salinity Laboratory Staff.1954. Diagnosis and improvement of saline and alkali soils. U.S. Dep. Of Agriculture Handbook no. 60, U.S. Government Printing Office, Washington, DC.
  75. Wang XJM, Jackman RS Yost, Linquist BA (2000) Predicting soil phosphorous buffer coefficients using potential sorption site density and soil aggregation. Soil Sci Soc Am J 64:240– 246
  76. Wilson, A. T. 1968. The chemistry underlying the phosphate problem in Agriculture. Aust. J. Sci. 31:55-61.
  77. Zhou M, Rhue RD, Harries WG (1997) Phosphorus sorption characteristics of Bh and Bt horizons from sandy coastal plain soils. Soil Sci Soc Am J 61:1364–1369
  78. Zhou, M., and Y. Li. 2001. Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Sci. Soc. Am. J. 65:1404–1412.