تغییرپذیری ویژگی های کیفی خاک در دو توده جنگل‌کاری بلند‌مازو (Quercus castaneifolia) و کاج رادیاتا (Pinus radiate)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری جنگل‌شناسی و اکولوژی، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران

2 گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران

3 دانشیار گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران

4 استادیار گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران

چکیده

ویژگی­های کیفی خاک­های جنگلی می­تواند تحت تأثیر فعل و انفعالات پیچیده آب و هوایی، نوع خاک (سنگ بستر)، نحوه مدیریت و نوع گونه درختی دچار تغییر شود. هدف از این مطالعه بررسی تغییرپذیری ویژگی­های کیفی خاک در دو توده جنگل­کاری بلند­مازو (Quercus castaneifolia C. A. Mey) و کاج رادیاتا (Pinus radiate D. Don) در جنگل­های چوب و کاغذ استان مازندران بود. به­منظور بررسی ویژگی­های فیزیکی، شیمیایی و زیستی خاک در چهار فصل (پاییز، زمستان، بهار و تابستان) در مجموع 36 نمونه در هر توده انتخاب و مورد تجزیه قرار گرفت. ویژگی­های فیزیکی (رس، سیلت، شن، رطوبت، چگالی ظاهری و آهک)، ویژگی­های شیمیایی (pH، EC، نیتروژن، فسفر، کربن خاک، پتاسیمو نسبت کربن به نیتروژن) و ویژگی­های زیستی خاک (تنفس خاک، زی­توده  میکروبی کربن، زی­توده  ریزریشه، ضریب سوخت­وساز و فعالیت آنزیم اوره­آز) اندازه­گیری شد. نتایج نشان داد که غلظت نیتروژن، فسفر و فعالیت آنزیم اوره­آز در توده بلندمازو به­طور معنی­داری بیشتر از کاج­ رایاتا بود (01/0>p )؛ ولی میزان پتاسیم در توده کاج­ رادیاتا بیشتر بود (01/0>p ). نتایج مقایسه میانگین­ها در ارتباط با تنفس خاک نشان داد که در تمام فصول میزان تنفس خاک در توده کاج رادیاتا بیشتر از بلندمازو است ولی این اختلاف تنها در تابستان از لحاظ آماری معنی­داری بود (01/0>p ). ویژگی­هایی مانند کربن خاک، زی­توده  میکروبیکربن و ریزریشه، نسبت کربن به نیتروژن و ضریب سوخت­و­ساز در تمام فصول در توده کاج رادیاتا به­طور معنی­داری  بیشتر از توده بلندمازو بود (01/0>p ). نتایج این مطالعه نشان می­دهد که در بخش ویژگی­های نیتروژن خاک، توده بلندمازو، ولی در رابطه با ویژگی­های کربن خاک توده کاج رادیاتا مقادیر بیشتری را به خود اختصاص داده­اند. در مجموع نتیجه کاربردی این تحقیق نشان داد که برای احیای خاک­های فقیرعرصه­های جنگلی تخریب­یافته ، کاشت گونه­های درختی با توانایی بالای تقویت خاک، مورد نیاز است.بنا بر این، به­منظور بهبود خاک در عرصه­های آسیب دیده، کاشت گونه بلندمازو در جنگل­های شمال ایران مرجح به­نظر می­رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Variability of Soil Quality Characteristics in Oak (Quercus castaneifolia) and Monterrey Pine (Pinus radiata) Plantations

نویسندگان [English]

  • Azam Sadat Nouraei 1
  • Seyyed Mohammad Hojjati 3
  • Seyyed Jalil Alavi 4
1 PhD., Dept. of Sciences and Forest Engineering, College of Natural Resources, Sari Agricultural Sciences and Natural Resources University
2 Dep. of Sciences and Forest Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, I.R. Iran
3 Associate Professor., Dept. of Sciences and Forest Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University
4 Assistant Professor., Dept. of forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor; Email: j.alavi@modares.ac.irDep. of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares
چکیده [English]

The qualitative characteristics of forest soils can change under the influence of complex climatic interactions, soil type, management type, and tree species type. The aim of this study was to investigate the variability of soil quality characteristics in two forest plantations of Quercus castaneifolia C. A. Mey and Pinus radiate D. Don in Wood and PaperForests of Mazandaran Province. In both stands, 36 samples were randomly selected for determination of soil physical characteristics, in one season (autumn), and chemical and biological characteristics, in four seasons (autumn, winter, spring and summer). Physical characteristics (clay, silt, sand, moisture, bulk density and lime), chemical characteristics (pH, EC, nitrogen, phosphorus, potassium, carbon to nitrogenratio) and soil biology (soil respiration, microbial biomass carbon, fine root biomass, metabolic rate, and urease enzyme activity) were measured. The results of this study showed that the concentration of nitrogen, phosphorus and enzyme urease activity in oak stands was significantly higher than pine stand (p < /span><0.01), but potassium concentrations were significantly (p < /span><0.01) higher in the pine stand. In all seasons, the rate of soil respiration in the pine stand was higher than in the oak, but this difference was only significant in summer (p <0.05). Characteristics such as carbon to nitrogen ratio, soil carbon, microbial biomass carbon, fine root biomass, and metabolic coefficient were significantly higher in pine stand than in oak in all seasons (p <0.01). The results of this study showed that, in the nitrogen cycle, the oak stand, but in relation to the carbon cycle and global warming, the pine stand had more effects on the soil characteristics. Overall, the practical results of this study suggest that, to improve soil conditions in the degraded forestlands in northern parts of Iran, plantation of oak species is preferred.

کلیدواژه‌ها [English]

  • Carbon Cycle
  • Microbial biomass carbon
  • Urease enzyme
  • Soil respiration
  • Forestation
  1. احمدی ملکوت، ا.، سلطانی، ع. یارعلی، ن. 1390. بررسی اثر جنگلکاری بر تنوع گیاهی زیراشکوب (مطالعه موردی لنگرود، گیلان). مجلة جنگل ایران، 3 (2): 157-167.
  2. اسدیان، م.، حجتی، س، م. پورمجیدیان، م. ر. و فلاح، ا. 1393. تأثیر انواع متفاوت کاربری زمین بر خصوصیات فیزیکی، شیمیایی، و زیستی خاک در جنگل الندان ساری.‎ جنگل و فرآورده های چوب (منابع طبیعی ایران)، 66 (2): 377- 388.
  3. بی­نام 1390. کتابچه طرح جنگلداری مهدشت و افراتخت، چوب و کاغذ مازندران.
  4. جعفریان حقیقی، م. 1381. روش­های آنالیز خاک. انتشارات ندای زها، 195 ص.
  5. حق­وردی، ک.، طریقت، ق.س. کوچ، ی. 1397. کیفیت لاشریزه و اجزای ناپایدار ماده آلی خاک در عرصه­های جنگلی احیا شده ناحیه خزری. نشریه پژوهش­های علوم و فناوری چوب و جنگل، 25 (2): 51-64.
  6. رحمتی، ح.، رستمی شاهراجی، ت.، صالحی، ع.، حیدری، ابوذر. 1399. مقایسه کمی و کیفی و خاک جنگلکاری بلندمازو و کاج رادیاتا در حوزه 25 شن­رود گیلان. مجله بوم­شناسی جنگل­های ایران. 8(15): 104-114.
  7. سنجی، ر.، کوچ، ی.، طبری کوچکسرایی، م. 1396. مقایسه زیتوده ریزریشه، جمعیت کرم‌های خاکی و نماتدهای خاکزی در خاک سطحی توده‌های طبیعی و دست‌کاشت جنگلی. نشریه پژوهش‌های حفاظت آب و خاک، 24(3): 219-234.
  8. علی اصغرزاد، ن. 1390. روش های آزمایشگاهی بیولوژی خاک، انتشارات دانشگاه تبریز، 255 صفحه. 
  9. کریمیان بهنمیری، ع.، طاهری آبکنار، ک. کوچ، ی. صالحی، ع. 1398. اثر ترکیب تاج پوشش گونه های درختی بر مشخصه‌های آلی و معدنی خاک جنگل‌های هیرکانی غربی (مطالعه موردی: جنگل کرکرود نوشهر). جنگل و فرآورده های چوب (منابع طبیعی ایران)، 72 (1): 47-56.
  10. 10. کوچ، ی.، بیرانوند، م. 1396. تحلیل تغییرپذیری شاخص­های کیفی لاشبرگ، نیتروژن معدنی، تنفس و زیتودة میکروبی خاک در توده­های جنگلی دست­کاشت. جنگل و فرآورده­های چوب، مجله منابع طبیعی ایران، 70 (3): 451-460.
  11. 11. کوچ، ی.، پارساپور، ک. 1395. اثر پوشش­های جنگلی پهن­برگ و سوزنی­برگ بر شاخص­های میکروبی خاک. نشریه پژوهش­های حفاظت آب و خاک، 23 (2): 195-210.
  12. 12. مصلحی، م.، نظری، ج. 1391. روابط متقابل کرم خاکی و درختان و اثرات آن بر خاک های جنگلی. انسان و محیط، 10(1): 108-113.
  13. Aguilera, L.E., Gutierrez, J.R., and Meserve, P.L. 1999. Variation in soil microorganisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. Journal of Arid Environments, 42 (1): 61–70.
  14. Alban, D.H. 1982. Effects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Science Society of America Journal. 46 (4):853–861.
  15. Bloem, J., Hopkins, D.W., and Benedetti, A. 2006. Microbiological Methods for Assessing Soil Quality. CABI, Wallingford, UK.
  16. Carvalheiro, K.D., and Nepstad, D.C. 1996. Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia. Plant Soil, 182 (2):279– 285.
  17. Challinor, D. 1968. Alteration of surface soil characteristics by four tree species. Ecology 49 (2):286–290.
  18. Chen, W., Zheng, X., Chen, Q., Wolf, B., Butterbach-Bahl, K., Brüggemann, N., and Lin, S. 2013. Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma, 192:335-340.
  19. Cuevas, E., Brown, S., and Lugo, A.F. 1991. Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil, 135:257–268.
  20. Dong, Y.S., Peng, G.B., and Li, J. 1996. Seasonal variations of CO2, CH4 and N2O fluxes from temperate forest soil. Acta Geographica. 51:120-8.
  21. Doran, J.W. 2002. Soils health and global sustainability: translating science into practice. Agric. Ecosystems. Environ, 88, 119–127.
  22. Doran, J.W., Parkin, T.B., 1996. Quantitative indicators of soil quality: a minimum data set. In: Doran, J.W., Jones, A.J. (Eds.), Methods for Assessing Soil Quality. SSSA, Inc., Madison, WI, USA.
  23. Ekblad, A., and Nordgren, A. 2002. Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability. Plant and Soil, 242(1), pp.115-122.
  24. Ewel, J. 2006. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities. Ecol. Appl, 16:490–502.
  25. Fu, D., Wu, X., Qiu, Q., Duan, C. and Jones, D.L. 2020. Seasonal variations in soil microbial communities under different land restoration types in a subtropical mountain’s region, Southwest China. Applied Soil Ecology, 153, p.103634.
  26. Gartzia-Bengoetxea, N., Kandelerb, E., Martínez de Arano, I., and Arias-Gonzáleza, A. 2016. Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Applied Soil Ecology, 100: 57–64.
  27. Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C., and Karolewski, P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87:2288–2297.
  28. Hojjati, S.M., Hagen-Thorn, A., and Lamersdorf, N.P. 2009. Canopy composition as a measure to identify patterns of nutrient input in a mixed European beech and Norway spruce forest in central Europe. European Journal of Forest Research, 128: 13–25.
  29. Jia, G., Jing, C., Wang, C. and Wang, G. 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China. Forest Ecology and Management, 217 (1), 117–125.
  30. Jouquet, P., Bottinelli, N., Podwojewski, P., Hallaire, V., and Duc, T.T. 2008. Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use systems in Vietnam. Geoderma, 146(1): 231-238.
  31. Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E. 1997. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.
  32. Keeler, B. L., Hobbie, S. E. and Kellogg, L. E. 2009. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems, 12, 1–15.
  33. Kooch, Y., Moghimian, N. and Alberti, G. 2020. C and N cycle under beech and hornbeam tree species in the Iranian old-growth forests. CATENA187, p.104406.
  34. Kooch, Y., Rostayee, F., and Hosseini, S.M., 2016. Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena, 144(2): 65-73.
  35. Kutsch, W.L., Schimel, J., Denef, K. 2009. Measuring soil microbial parameters relevant for soil carbon fluxes. In: Kutsch, W., Bahn, M., Heinemeyer, A. (Eds.), Soil Carbon Dynamics. An Integrated Methodology. Cambridge University Press, Cambridge, UK, pp. 169–186.
  36. Lal, R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220:242– 258.
  37. Mao, R., Zhang, X.H., and Meng, H.N. 2014. Effect of Suaeda salsa on soil aggregate-associated organic carbon and nitrogen in tidal salt marshes in the Liaohe Delta, China. Wetlands, 34(1): 189-195.
  38. Mattson, K.G. 1995. CO2 efflux from coniferous forest soils: comparison of measurement methods and effects of added nitrogen. Soils and Global Change, pp.329-342.
  39. Maxwell, T.L., Augusto, L., Bon, L., Courbineau, A., Altinalmazis-Kondylis, A., Milin, S., Bakker, M.R., Jactel, H. and Fanin, N. 2020. Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biology and Biochemistry, p.107864.
  40. Meier, R.A., Melillo, J.M., Moore III, B., Prentice, I.C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.J. and Wittenberg, U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analysis of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemistry Cycles, 15:183–206.
  41. Montagnini, F., Ramstad, K., and Sancho, F. 1993. Litterfall, litter decomposition and the use of mulch of four indigenous tree species in the Atlantic lowlands of Costa Rica. Agroforestry System, 23:39–61.
  42. Ohlinger, R., Schinner, F., Kandeler, E. and Margesin, R. 1996. Acid and alkaline phosphomonoesterase activity with the substrate p-nitrophenyl phosphate. In: (Eds) Methods in Soil Biology, Springer-Verlag Berlin, 214p.
  43. Paul, E.A. 1984. Dynamics of organic matter in soils. Plant Soil, 76:275–285.
  44. Potter, C.S., Ragsdale, H.L., and Swank, W.T. 1991. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. The Journal of Ecology, 97-115.
  45. Prieme, A., and Christensen, S. 2001. Natural perturbations, drying-welting and freezing thouing cycles and the emission of nitrous oxide, carbon di oxide and methane from farmed organic soils. Soil. Bio. Chem, 33: 2083–2091.
  46. Raich, J.W., and Schlesinger, W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B: 81–99.
  47. Russell, A.E., Raich, J.W., Valverde-Barrantes, O.J., and Fisher, R.F. 2007. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Science Society of America Journal, 71(4):1389-1397.
  48. Sayer, E.J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81(1): 1-31.
  49. Wang, Q., Wang, S. 2011. Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Appl. Soil Ecology, 47 (3):210–216.
  50. Warren, M.W., and Zou, X. 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170:161–171.
  51. Xiong, Y., Xia, H., Li, Z.A., Cai, X.A., and Fu, S. 2008. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant and Soil, 304(1-2): 179-188.
  52. Yadav, R. 2012. Soil organic carbon and soil microbial biomass as affected by restoration measures after 26 years of restoration in mined areas of Doon Valley. Int. J. Environ. Sci, 2:1380–1385.
  53. Zhang, X.J., Xu, H. and Chen, G.X. 2001. Major factors controlling nitrous oxide emission and methane uptake from forest soil. Journal of Forestry Research, 12: 239–242.