تأثیر غلظت پس‌زمینه نانوذرات دی‌اکسید‌تیتانیم بر انتقال آن‌ها در خاک‌های غیراشباع

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشگاه فردوسی مشهد

3 استاد گروه خاک، دانشگاه فردوسی مشهد

چکیده

برای مدیریت هر دو جنبه مثبت و منفی کاربرد موادنانو هنگام ورود بهسامانه­های طبیعی، اطلاع از نحوه توزیع و سرنوشت این مواد در این سامانه­ها ضرورت دارد، در این باره، غلظت پس­زمینه نانوذرات یکی از عوامل مؤثر بر فرایند انتقال است. در این تحقیق،به منظور بررسی اثر غلظت پس­زمینه بر انتقال نانوذرات دی اکسید تیتانیم، ابتدا انتقال نانوذرات دی اکسید تیتانیم در قالب آزمایش­های ستونی خاک دست­نخورده در دبی­های مختلف جریان بررسی شد. دبی به ترتیب برابر با هدایت هیدرولیکی اشباع (جریان اشباع)، 9/0، 7/0 و 5/0 برابر هدایت هیدرولیکی اشباع خاک (جریان غیراشباع) توسط پمپ پریستالتیک (BT100-1F) به ستون­های خاک اضافه شد. سپس به منظور بررسی اثر آزمایش اول (غلظت پس­زمینه بعد از آزمایش اول) روی آزمایش­های بعدی، در یک ستون پس از آزمایش جریان اشباع و اندازه­گیری محلول خروجی و تعیین غلظت نانوذرات TiO2 در آن به عنوان تابعی از زمان، جریان با دبی­های در واحد سطح به ترتیب 540، 420 و 300 میکرولیتر بر دقیقه که به ترتیب معادل 9/0، 7/0 و 5/0 برابر هدایت هیدرولیکی اشباع هستند، برقرار شد.[H1]  پارامترهای تبیین کننده انتقال نانوذرات با استفاده از داده­های اندازه­گیری شده منحنی­های رخنه بر مبنای مدل جذب تک مکانی و مدل جذب سینتیک تک مکانی برآورد شدند. در دبی 540 میکرولیتر بر دقیقه (Ks 9/0) میزان نانوذرات TiO2 خروجی از ستون نسبت به شرایط عدم وجود غلظت پس­زمینه کم­تر بود( 9% نسبت به 2/17%). دلیل این نتیجه افزایش غلظت نانوذرات و بنابراین احتمال برخورد بیش­تر و تشکیل انبوهه­های بزرگ­تر بود که سبب به دام افتادن آن­ها در منافذ خاک می شود. با کاهش دبی جریان از 540 به 420  (Ks 7/0) و سپس 300 میکرولیتر بر دقیقه (Ks 5/0)، نسبت به شرایطی که غلظت پس­زمینه در ستون خاک وجود نداشت به دلیل افـزایش نانوذرات در ستون خاک و کمبود مکان جذب برای آن­ها، نانوذرات بیشتری وارد زهاب خروجی از ستون شد(به­ترتیب 4% و 6% نسبت به 5/3% و 9/2%). بنابراین، با توجه به تأثیری که غلظت پس­زمینه نانوذرات بر انتقال آن­ها در خاک دارد باید در پروژه­های پاک‌سازی خاک و آب‌های آلوده که از نانوذره TiO2 استفاده می شود، ابتدا غلظت زمینه این نانوذره در محیط تعیین و تأثیر آن نیز بر فرایند انتقال بسته به شدت جریان ورودی لحاظ شود. در مدل سینتیک جذب تک مکانی با لحاظ شدن ضریب واجذب نانوذرات TiO2،نتایج تخمین میزان انتقال نانوذرات از ستون خاک با 89/0<R2 همچنین ME و RMSE بسیار کم­تر از مدل جذب تک مکانی در تمام نرخ­های جریان، بهبود قابل توجهی یافت.



 [H1]لازم است در چند جمله کوتاهتر این مطلب به طور مفهوم نوشته شود

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Background Concentration of Titanium Dioxide Nanoparticles on Their Transport in Unsaturated Soils

نویسندگان [English]

  • S. Omidi 1
  • B. Ghahraman 2
  • A. Fotovat 3
  • K. Davary 2
1 PhD student, Ferdowsi University of Mashhad
2 Professor, Water Engineering Group, Ferdowsi University of Mashhad
3 Professor, Soil Sciences Group, Ferdowsi University of Mashhad
چکیده [English]

To manage the positive and negative aspects of application of nanomaterials to natural systems, it is necessary to know the distribution and fate of these materials in such systems. In this regard, the nanoparticle background concentration is one of the factors affecting the transfer process. In this study, in order to investigate the effect of background concentration on the transport of titanium dioxide nanoparticles, transport of TiO2 nanoparticles was first investigated in undisturbed soil columns under different flow rates. The flow rates were equal to the saturated hydraulic conductivity (Ks), 0.9 Ks, 0.7 Ks,and 0.5 Ks (unsaturated flow) applied by peristaltic pump (BT100-1F) to the different soil columns. Then, in order to investigate the effect of the first experiment (background concentration after the first experiment) on subsequent experiments, in a column after the saturation flow test and measuring the outflow and determining the concentration of TiO2 nanoparticles as a function of time, flow rates at unit volume of 540, 420, and 300 μL/min, respectively, are 0.9, 0.7 and 0.5 times the saturated hydraulic conductivity, respectively. [H1] Parameters explaining the transport of nanoparticles using measured data of breakthrough curves based on one-site sorption model and one kinetic site sorption model were estimated. At 540 μL/min, the amount of TiO2 nanoparticles in outflow from the column was lower relative to the absence of the background concentration due to the increase in the concentration of nanoparticles and, therefore, the possibility of more collisions and formation of larger aggregates that caused trapping (straining) them in the pores of the soil. By decreasing the flow rate from 540 to 420 and then 300 μL/min, there was no background concentration in the soil column due to the increase of the nanoparticles in the soil column and the lack of sorption site for more nanoparticles were introduced into the outlet from the column[H2] . Therefore, due to the effect of TiO2 NPs background concentration on the transfer of these particles in the soil, it is necessary to determine their background concentration in the contaminated soil and water where TiO2 NPs are used for remediation of contamination. Also, effect of background concentration on the transfer process depending on the influent flow rate should be considered. In the one kinetic sorption site model, taking into account the detachment coefficient of TiO2 nanoparticles, the results of estimation the nanoparticles transport through soil column were significantly improved (R2>0.89, ME, and RMSE were also much lower than the one site sorption model at all flow rates).



 [H1]دوباره نویسی شود. مفهوم نیست.




 [H2]نا مفهوم.

کلیدواژه‌ها [English]

  • Attachment
  • Breakthrough curves
  • Detachment
  • Unsaturated
  1. ساعد پناه، م.، ف. قربانی، ج. امان اللهی. 1397. تعیین منشأ سطح آلودگی و پیش­بینی غلظت برخی از عناصر آلاینده معدنی در خاک­های سطحی شهر سنندج. مجله مهندسی بهداشت محیط، 3: 250-233.
  2. محمدی،ج. 1385. پدومتری: آمارکلاسیک (تک متغیره وچند متغیره). جداول، انتشارات پلک، تهران.
  3. Ben-Moshe, T., I. Dror, and B. Berkowitz. 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere. 81 (3): 387-393.
  4. Botes, M., and T.E. Cloete. 2010. The potential of nanofibers and nanobiocides in water purification. Crit. Rev. Microbiol. 36(1): 68–81.
  5. Bradford, S.A., and S. Torkzaban. 2008. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J. 7 (2): 667–681.
  6. Bradford, S.A., H.N. Kim, B.Z. Haznedaroglu, S. Torkzaban, S.L. Walker. 2009. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43(18):6996–7002.
  7. Bradford, S.A., S. Torkzaban, and S.L. Walker. 2007. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13): 3012–3024.
  8. Breckenridge, R.P. and A.B. Crockett 1995. Determination of background concentrations of inorganics in soils and sediments at hazardous waste sites. EPA/540/S-96/500, Washington, DC.
  9. Chen, G., X. Liu, and C. Su. 2011. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media under Low-Ionic-Strength Conditions: Measurements and Mechanisms. Langmuir. 27(9): 5393–5402.
  10. Chen, L.X., D.A. Sabatini, and T.C.G. Kibbey. 2010. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. J Contam. Hydrol. 118(3-4):199-207.
  11. Chen, M., L.Q. Ma, C.G. Hoogeweg, and W.G. Harris. 2001. Arsenic background concentrations in Florida, U.S.A. surface soils: determination and interpretation. Environ. Forensics. J. 2:117-126.
  12. Cho, M., H.Chung, W. Choi, andJ. Yoon. 2005. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl.Environ. Microbiol. 71: 270–275.
  13. Chowdhury I, Y. Hong, R.J. Honda, and S.L. Walker. 2011. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J. Colloid InterfaceSci. 360(2):548–555.
  14. Corapcioglu, M., and H. Choi, 1996. Modeling colloid transport in unsaturated porous media and validation with laboratory column data. Water Resour Res. 32(12): 3437–3449.
  15. Darlington, T.K., A.M. Neigh, M.T. Spencer, O.T. Guyen, and S.J. Oldenburg. 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ. Toxicol. Chem. 28:1191–1199.
  16. DeNovio, N., J. Saiers, and J. Ryan. 2004. Colloid movement in unsaturated porous media: Recent advances and future directions. Vadose Zone J. 3(2): 338–351.
  17. Donaldson, K., F.A. Murphy, R. Duffin, and C.A. Poland. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7(5):17 pp.
  18. Elimelech, M., J. Gregory, X. Jia, and R.A. Williams, 1995. Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann Ltd., Oxford.
  19. Elliott, W., and W. Zhang. 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol. 35:4922–4946.
  20. European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial. http:// ec.europa.eu/environment/chemicals/nanotech/index. htm#definition. Accessed August 3, 2012.
  21. Fang, J., M.j. Xu, D.j. Wang, B. Wen, and J.Y. Han. 2013. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Water Res. 47 (3): 1399-1408.
  22. Fang, J., X.Q. Shan, B.Wen, J.M.Lin, G. Owens, and S.R. Zhou. 2011. Transport of copper as affected by titania nanoparticles in soil columns. Environ. Pollut. 159 (5): 1248-1256.
  23. Fang, J., X. Shan, B. Wen, J. Lin, and G. Owens. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut. 157:1101–1109.
  24. Farah, S., O. Aviv, N. Laout, S. Ratner, N. Beyth, and A.J. Domb. 2015. Quaternary ammonium polyethylenimine nanoparticles for treating bacterial contaminated water. Colloids Surf B. Biointerfaces, 128: 614–619.
  25. Godinez, I.G., and Darnault, C.J.G. 2011. Aggregation and transport of nano-TiO2 in saturated porous media:Effects of pH, surfactants and flow velocity. Water Res. 45(2):839-851. doi:10.1016/j.watres.2010.09.013.
  26. Grieger, K.D., A. Fjordboge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, and A. Baun. 2010. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade- off? J. Contam. Hydrol. 118: 165-183.
  27. Hartmann, N.B., L.M. Skjolding, S. Foss Hansen, J. Kjølholt, F. Gottschalk, and A. Baun. 2014. Environmental fate and behaviour of nanomaterials, New knowledge on important transformation processes, Tech. rep., Danish Environmental Protection Agency, http://orbit.dtu.dk/en/publications/ environmental-fate-and-behaviour-of-nanomaterials% 28d61841c6-1d36-4d23-96eb-fdf6a7a31ef4%29/export.html, 2014.
  28. He, F., Zhang, M., Qian, T.W., and Zhao, D.Y. 2009. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media:Column experiments and modeling. J. Colloid. Interface Sci. 334(1):96-102.
  29. Jiang, X. J., X.T., Wang, M. P. Tong, and H. Kim, 2013. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environ. Pollut. 174:38-49.
  30. Jiang, Y., L. Yu, H. Sun, X. Yin, C. Wang, S. Mathews, and N. Wang. 2017. Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength. Chem. Spec. Bioavailab. 29(1): 186-196.
  31. Kaegi, R., A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, and M. Boller. 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156: 233-239.
  32. Klaine, S.J., A.A. Koelmans, N. Horne, S. Carley, R.D. Handy, L. Kapustka, and F. von der Kammer. 2012. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ.Toxicol. Chem. 31(1): 3-14.
  33. Kumahor, S.K., P. Hron, G. Metreveli, G.E. Schaumann, and H.J. Vogel. 2015. Transport of citrate-coated silver nanoparticles in unsaturated sand. Sci. Total Environ. 535: 113-121.
  34. Li, D., F. Cui, Z. Zhao, D. Liu, Y. Xu, H.  Li, X. Yang. 2014. The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation. 25: 167–177.
  35. Li, Y.S., Y.G. Wang, K.D. Pennell, and L.M. Abriola. 2008. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 42(19):7174-7180.
  36. Liang, Y., S.A. Bradford, J. Simunek, H. Vereecken, and E. Klumpp. 2013b. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res. 47 (7): 2572–2582.
  37. Liang, Y., S.A. Bradford, J. Simunek, M. Heggen, H. Vereecken, E. Klumpp. 2013a. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ. Sci. Technol. 47 (21): 12229–12237.
  38. Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (2): 431-441.
  39. Nancy A., C. Monteiro-Riviere, T. Lang. 2007. Nanotoxicology: characterization, dosing and health effects. USA: CRC Press Inc, 14: 225–236.
  40. Navarro, E., A. Baun, R. Behra, N.B. Hartmann, J. Filser, A. J. Miao, A.J. Quigg, A.P.H. Santschi, and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17: 372–386.
  41. Ozaki, Y., and S. Kawata. 2015. Far and deep ultraviolet spectroscopy. ISBN 978-4-431-55549-0 (eBOOK).DOI 10.1007/978-4-431-55549-0. WWW. Spriger. Com
  42. Phenrat, T., N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ.Sci. Technol. 41:284–290
  43. Rahmatpour, S., M.R. Mosaddeghi, M. Shirvani, and J.J. Simunek. 2018. Transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture. Geoderma. 322: 89–100.
  44. Rückerl, R., A. Schneider, S. Breitner, J. Cyrys, and A. Peters. 2011. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 23(10): 555–592.
  45. Simunek, J., M.T. van Genuchten, M. Sejna. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7:587–600.
  46. Stone, V., S. Hankin, R. Aitken, K. Aschberger, A. Baun, F. Christensen, T. Fernandes, S.F. Hansen, N.B. Hartmann, G. Hutchinson, H. Jonston, C. Micheletti, S. Peters, B. Ross, B. Sokull-Kluettgen, D. Stark, and L. Tran. 2010. Engineered Nanoparticles: Review of Health and Environmental Safety (ENHRES). Final report. Available at: http://ihcp.jrc.ec.europa.eu/whats- new/enhres-final-report
  47. Su, Y.Z. and R. Yang. 2008. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. J. Geochem. Explor. 98:57-64.
  48. Taghavy, A., A. Mittelman, Y. Wang, K.D. Pennell, and L.M. Abriola. 2013. Mathematical Modeling of the Transport andDissolution of Citrate-Stabilized Silver Nanoparticles in Porous Media. Environ. Sci. Technol. 47(15):8499-8507.
  49. Torkzaban, S., S.A. Bradford, M.T. van Genuchten, and S.L. Walker. 2008. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. J. Contam. Hydrol. 96:113–127.
  50. Tosco, T., J. Bosch, R.U. Meckenstock, and R. Sethi. 2012. Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate. Environ. Sci. and Technol. 46(7): 4008–4015.
  51. Tourinho, P.S., C.A. Van Gestel, v. Lofts, C. Svendsen, A.M. Soares, and S. Loureiro. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31:1679–1692.
  52. US EPA (Environmental Protection Agency). 2007. Nanotechnology White Paper. US EPA Office of the Science Advisor. EPA 100/B-07/001 | February
  53. Wang, Y.G., Y.S. Li, and K.D. Pennell. 2008. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ. Toxicol. Chem.27:1860–1867.
  54. Warheit, D.B., R.A. Hoke, C. Finlay, E.M. Donner, K.L. Reed, and C.M. Sayes. 2007. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 171: 99–110.
  55. Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63(11):1309-1313.
  56. Zhang, W., V.L. Morales, M.E. Cakmak, A.E. Salvucci, L.D. Geohring, A.G. Hay, J.Y. Parlange, and T.S. Steenhuis. 2010. Colloid Transport and Retention in Unsaturated Porous Media: Effect of Colloid Input Concentration. Environ. Sci.Technol. 44(13):4965-4972.