اثر سطوح مختلف شوری آب آبیاری و فسفر بر برخی خصوصیات خاک و گیاه کینوا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد گروه علوم خاک دانشکده کشاورزی دانشگاه شاهد

2 دانشیار، گروه علوم خاک دانشکده کشاورزی دانشگاه شاهد

3 استادیار پژوهشی، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

یکی از راه‌های استفاده و بهره برداری از آب واراضی شور استفاده از ارقام متحمل به شوری مانند گیاه کینوا است. مدیریت عناصر غذایی مانند فسفر در خاک‌های شور می‌تواند اثرات منفی شوری بر رشد و عملکرد گیاهان را کاهش دهد. به‌منظور بررسی تأثیر سطوح شوری و فسفر بر برخی ویژگی‌های گیاه کینوا در شرایط گلخانه‌ای آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار صورت پذیرفت. تیمارهای آزمایش شامل شوری آب آبیاری در شش سطح: شاهد (7/0)، 3، 6، 9، 12 و ۱۵دسی زیمنس بر متر و فسفر از طریق اضافه کردن به خاک از منبع سوپر فسفات تریپل در چهار سطح، 0، 50، 100، 200 کیلوگرم در هکتار (معادل 01/0، 02/0 و 04/0 گرم فسفر در گلدان) بود. نتایج نشان داد با افزایش شوری آب آبیاری تا 15 دسی زیمنس بر متر (معادل شوری نهایی عصاره اشباع خاک 44/30 دسی­زیمس بر متر)، ارتفاع گیاه 65/18% و طول پانیکول 4/52 درصد کاهش، هدایت الکتریکی عصاره اشباع خاک 72/218 دسی زیمنس بر متر بود و غلظت سدیم در گیاه 5/18 درصد افزایش یافت. با افزایش فسفر به خاک تا سطح 100 کیلوگرم بر هکتار ارتفاع گیاه در مقایسه با شاهد 3/12%، طول پانیکول 79/8% و غلظت فسفر در اندام هوایی گیاه 5/12 درصد افزایش یافت. نتیجه حاصل از مقایسه میانگین اثر متقابل شوری آب آبیاری و فسفر بر ارتفاع گیاه نشان داد که در تمام سطوح فسفر، شوری 3 دسی زیمنس بر متر باعث ایجاد بیشترین ارتفاع گیاه شد که در مقایسه با شاهد 09/15 درصد افزایش یافت. افزودن فسفر تا سطح 100 کیلوگرم سوپرفسفات تریپل در هکتار باعث کاهش اثر تنش شوری در گیاه شد اما در 200 کیلوگرم اثرات شوری را تشدید کرد و منجر به تشدید کاهش ارتفاع گیاه و طول پانیکول شد. بیشترین غلظت فسفر در سطح 100 کیلوگرم در هکتار فسفر و شوری 15 دسی زیمنس بر متر مشاهده شد که در مقایسه با شاهد 92/80 درصد افزایش یافت. بر اساس نتایج به دست آمده کینوا می‌تواند انتخاب بسیار مناسبی برای زمین‌های شور و کم بازده باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Different Levels of Irrigation Water Salinity and Phosphorus on Some Properties of Soil and Quinoa Plant

نویسندگان [English]

  • S. Khalili 1
  • A. Bastani 2
  • M. Bagheri 3
1 MSc. Graduate, Department of Soil Science, Shahed University
2 Associate Professor, Department of Soil Science, Shahed University
3 Assistant Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

One of the ways to use and exploit saline lands and water is to use salinity resistant cultivars, such as Quinoa plant. Managing nutrients such as phosphorus in saline soils can reduce the negative effects of salinity on plant growth and yield. In order to investigate the effect of irrigation water salinity (ECW) and phosphorus levels on some of the characteristics of Quinoa plant in greenhouse conditions, a factorial experiment was conducted in a completely randomized design with three replications. The treatments consisted of ECW  at six levels: control (0.7), 3, 6, 9, 12, and 15 dSm-1, and phosphorus was added to the soil from the source of triple superphosphate at four levels, 0, 50, 100, 200 kg per hectare (equivalent to 0, 0.01, 0.02 and 0.04 grams of phosphorus in the pot  from source of triple superphosphate). The results showed that with increasing ECW up to 15 dS m-1 (equivalent to ECe= 30.44 dSm-1), plant height decreased by 18.65% and panicle length by 52.4%. ECe reached 182.72 dSm-1 and sodium concentration in plant increased by 18.5%, compared with the control. Increasing phosphorus application to the soil up to 100 kg/ha increased plant height by 12.3%, panicle length by 8.8%, and phosphorus concentration ​​in plant aerial parts by 12.5%, compared to the control. Comparison of the average interactions between salinity of irrigation water and phosphorus on plant height showed that salinity of 3 dS/m, at all levels of phosphorus, increased the plant height by 15.1%, in comparison with the control. Adding phosphorus up to 100 kg triple-super phosphate per hectare reduced the effect of salinity stress in the plant, but at 200 kg it exacerbated the effects of salinity and led to a sharp decrease in plant height and panicle length. The highest concentration of phosphorus was observed at 100 kg/ha phosphorus and 15 dS/m salinity, which increased by 92.9% compared to the control. Based on the results, quinoa can be a very good choice for saline and low-yielding lands.

کلیدواژه‌ها [English]

  • Soil salinity
  • Salinity stress
  • Salt tolerance
  • Triple-super phosphate
  1. توجه منصوره، کریمیان نجفعلی، رونقی عبدالمجید، یثربی جعفر، حمیدی رضا و علما ویدا (1393). اثر سطوح فسفر و بور بر عملکرد، اجزای عملکرد و کیفیت دانه دو رقم کلزا در شرایط کشت گلخانه‌ای. علوم و فنون کشت‌های گلخانه‌ای/ سال ششم/ شماره بیست و چهارم/ زمستان ۱۳
  2. حیدری، نسیم، ریحانی تبار، عادل، نجفی، نصرت اله و شاهین. (2013). توزیع شکل‌های مختلف فسفر در برخی خاک‌های استان آذربایجان شرقی و رابطه آن با برخی ویژگی‌های خاک. تحقیقات آب و خاک ایران، 44(3), 271-279.
  3. خانکهدانی حامد حسن زاده، شاکر درگاه غلامعباس، درجانی فائزه 1392. تعیین بهترین تاریخ کشت گیاه کینوا (Chenopodium quinoa) در نوار ساحلی جنوب ایران، اولین همایش ملی الکترونیکی "مباحث نوین در علوم باغبانی"
  4. راوری، سید ذبیح‌الله، دهقانی، نقوی و هرمزد. (2016). ارزیابی تحمل به شوری ارقام گندم نان بر اساس شاخص‌های تحمل مبتنی بر نسبت پتاسیم به سدیم برگ پرچم. تحقیقات غلات، 6(2), 133-144.‎
  5. زاهدی فر مریم، رونقی عبدالمجید، موسوی سیدعلی اکبر و صفرزاده شیرازی صدیقه (1389). تأثیر سطوح شوری و نیتروژن بر رشد، عملکرد و جذب عناصر غذایی گوجه فرنگی تحت شرایط آبکشت. علوم و فنون کشت‌های گلخانه ای / سال اول / شماره دوم / تابستان ۱۳
  6. سید شریفی، رئوف، کمری و نجفی. (2014). تأثیر تنش شوری و تغذیه برگی با نانو اکسید روی بر عملکرد و برخی خصوصیات مورفوفیزیولوژیکی جو (Hordeum vulgare L.). پژوهش‌های زراعی ایران، 13(2), 399-410
  7. شیدایی سامان، زاهدی مرتضی و میرمحمدی میبدی سیدعلی محمد. اثر تنش شوری بر تجمع ماده خشک و الگوی توزیع یونی در پنج ژنوتیپ گلرنگ (. Carthamus tinctorius L).‎فرهادی حسن، عزیزی مجید و نعمتی سیدحسین. بررسی اثرات تنش شوری بر صفات مرتبط با عملکرد در هشت توده بومی شنبلیله (. Trigonellafoenom-graecum L).‎
  8. قول لرعطا محمود، رییسی گهرویی فائزه و نادیان حبیب اله (1387). اثرات متقابل شوری و فسفر بر رشد، عملکرد و جذب عناصر در شبدر برسیم (. Trifolium alexandrinum L).‎ مجله پژوهش‌های زراعی ایران، جلد 6، شماره 1 سال 1387.
  9. مظلومی فرهاد و رونقی عبدالمجید، 1389، اثر شوری و فسفر بر رشد و ترکیب شیمیایی دو رقم اسفناج، علوم و فنون کشت‌های گلخانه ای / سال سوم / شماره نهم/ بهار 1391
  10. وزیری کته شوری سارا، دانشور ماشااله، سهرابی اکبر و نظریان فیروزآبادی فرهاد 1392. تأثیر مقادیر مختلف فسفر و محلول پاشی آهن و روی بر عملکرد دانه و اجزای عملکرد نخود زراعی (. Cicer arietinum L).به زراعی کشاورزی (مجله کشاورزی پردیس ابوریحان)   تابستان 1392, دوره  15, شماره 2; از صفحه 17تا صفحه 30.
  11. Alshameri, A., Al-Qurainy, F., Khan, S., Nadeem, M., Gaafar, A. R., Tarroum, M., ... and Ashraf, M. (2017). appraisal of guar [cyamopsis tetragonoloba (l.) taub.] accessions for forage purpose under the typical saudi arabian environmental conditions encompassing high temperature, salinity and drought. Pak. J. Bot, 49(4), 1405-1413.
  12. Awad, A. S., D. G. Edwards and L. C. Campell. 1990. Phosphorus enhancement of salt tolerance of tomato. Crop Sci. 30: 123-128.
  13. Baghalian, K., Haghiry, A., Naghavi, M. R., and Mohammadi, A. (2008). Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Horticulturae, 116(4), 437-441.
  14. Bazile, D., Bertero, H. D., and Nieto, C. (2015). State of the art report on quinoa around the world in 2013.
  15. Eisa. S, Hussin. S, Geissler. N, Koyro. H.W (2012), Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte, Australian journal of crop science, AJCS 6(2):357-368
  16. El-Wahab, A. (2006). The efficiency of using saline and fresh water irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare Mill subsp. vulgare var. vulgare under North Sinai conditions. Res J Agr Biol Sci, 2(6), 571-7.
  17. García Morales, S., Trejo-Téllez, L. I., Gómez Merino, F. C., Caldana, C., Espinosa-Victoria, D., and Herrera Cabrera, B. E. (2012). Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Scientiarum. Agronomy, 34(3), 317-324.
  18. Gibson, T. S. 1988. Carbohydrate metabolism and phosphorus salinity interaction in wheat (Triticum aestivum L.). Plant Soil. 111: 25-35
  19. Grattan, S. R., and Grieve, C. M. (1999). Mineral nutrient acquisition and response by plants grown in saline environments. Handbook of plant and crop stress, 2, 203-229.
  20. Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., and Shabala, S. (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193.
  21. Jacobsen, S. E., Hollington, P. A., and Hussain, Z. (2002). Quinoa (Chenopodium quinoa Willd.), a potential new crop for Pakistan. In Prospects for Saline Agriculture (pp. 247-249). Springer Netherlands.
  22. Jacoby, B. 1999. Mechanisms involved in salt tolerance of plants. PP. 97-123. In: Pessarakli, M. (Ed.),Handbook ofPlant and Crop Stress, Marcel Dekker Inc., New Yor
  23. Jones Jr, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC press.
  24. Khalil, M. A., F. Amer and M. M. Elgabaly. 1967. A salinity-fertility interaction study on corn and cotton. Soil Sci. Soc. Am. Proc. 31: 683-686.
  25. Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press
  26. Kaya, C., D. Higgs and H. Kirnak. 2001. The effects of salinity (NaCl) and supplementary phosphorus and
  27. otassium on physiology and nutrition development of spinach. Bulg. J. Plant Physiol. 27(3-4): 47-59.
  28. Koyro, H. W., and Eisa, S. S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302(1-2), 79-90.
  29. Koyro, Hans-Werner and Eisa,Sayed Said (2007), Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd, Plant Soil (2008) 302:79–90
  30. Levitt, J. (1972). Response of plants to environmental stresses. Water, radiation, Salt and other stresses, 2.
  31. Loupassaki, M. H., Chartzoulakis, K. S., Digalaki, N. B., and Androulakis, I. I. (2002). Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition, 25(11), 2457-2482.
  32. Marschner, P., Z. Solaman and Z. Rengel. 2007. Brassica genotype differ in growth, phosphorus uptake andrhizosphere properties under P-limiting condition. Soil Biol. Biochem. 39: 87-99.
  33. Naheed, G., M. Shahbaz and N. A. Akram. 2008. Interactive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryaz Sativa L.). Pak. J. Bot. 40(4): 1601-1608.
  34. Navarro, J. M., Botella, M. A., Cerdá, A., and Martinez, V. (2001). Phosphorus uptake and translocation in salt-stressed melon plants. Journal of plant physiology, 158(3), 375-381.
  35. Nguyen Viet Long (2016):effects of salinity stress on growth and yield of quinoa (Chenopodium quinoa Willd.) at flower initiation stages. Vietnam J. Agri. Sci. 2016, Vol. 14, No. 3: 321-327
  36. Olsen S, Cole C, Watanabe F, Dean L (1954) Estimationof available phosphorus in soils by extraction withsodium bicarbonate. USDA Circular Nr 939, US Gov.Print. Office, Washington, D.C.
  37. Peterson, A., and Murphy, K. (2015). Tolerance of lowland quinoa cultivars to sodium chloride and sodium sulfate salinity. Crop Science, 55(1), 331-338.
  38. Qadir M., Noble A.D., Oster J.D., Schubert S., Ghafoor A. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic soils. Soil Use and Management 21, 173–180.
  39. Razaq, M., Zhang, P., and Shen, H. L. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PloS one, 12(2), e017132
  40. Swift, R. S., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., ... and Sumner, M. E. (1996). Methods of soil analysis: chemical methods. Methods of soil analysis: Chemical methods, 5.
  41. Tabatabaie, S. J., and Nazari, J. (2007). Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turkish Journal of Agriculture and Forestry, 31(4), 245-253.
  42. Talbi Zribi, O., Abdelly, C., and Debez, A. (2011). Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biology, 13(6), 872-880
  43. Vance C.P., Uhde-Stone C., Allan D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist,157, 423–447.
  44. Yazar, A., Incekaya, Ç., Sezen, S. M., and Jacobsen, S. E. (2015). Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science, 66(10), 993-1002.