تأثیر شوری آب آبیاری بر عملکرد جو، رطوبت و شوری خاک در طول فصل رشد، و بهره‌وری آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

2 استاد دانشکده کشاورزی دانشگاه شیراز، شیراز، ایران

3 دانشیار دانشکده کشاورزی دانشگاه شیراز، شیراز، ایران

چکیده

در یک مطالعه 2 ساله مزرعه­ای، رطوبت و هدایت الکتریکی عصاره اشباع (ECe) خاک در سه عمق در طول فصل رشد و همچنین عملکرد بیولوژیک و دانه و بهره­وری آب گیاه جو رقم نصرت تحت تأثیر دو سطح شوری آب آبیاری به میزان 2 و 12 دسی­زیمنس برمتر پایش ‌شد. نتایج نشان داد که عملکرد بیولوژیک و دانه و بهره­وری آب در اثر تنش شوری به ترتیب با کاهش 0/36%، 1/52% و 0/23 درصدی در سال اول و 4/48%، 1/69% و 7/31 درصدی در سال دوم همراه بود، که این افت بیشتر در سال دوم ناشی از مقدار کمتر بارش بود. میانگین دو ساله بهره وری آب بر حسب عملکرد دانه، در مورد آب با شوری 2 دسی­زیمنس برمتر 87/0 کیلوگرم بر مترمکعب  و با آب شور12 دسی­زیمنس برمتر برابر 64/0 کیلوگرم بر مترمکعب به دست آمد. در تمام روزهای پس از اعمال تیمار شوری، رطوبت خاک در هر سه عمق در کرت­های شاهد به‌طور معنی­داری کمتر از کرت­های شور بود. این تفاوت در عمق اول روند مشخص­تری داشت و تا آخر فصل رشد ادامه داشت. به­طور میانگین، درصد رطوبت در کرت­های شور نسبت به کرت­های شاهد در سال­های اول و دوم به ترتیب به میزان 8/16% و 4/22 درصد بیشتر بود. در هر دو سال هدایت الکتریکی خاک نیز، بلافاصله پس از اعمال شوری تحت تأثیر قرار گرفت و با گذشت زمان، این تأثیر بیشتر شد. تیمارهای شوری 2 و 12 دسی­زیمنس برمتر به ترتیب باعث کاهش و افزایش هدایت الکتریکی عصاره اشباع خاک گردیدند. بیشینه هدایت الکتریکی خاک در هر سه عمق در 160 روز پس از کاشت به­دست آمد. به­طورکلی، آبیاری با آب شور باعث افزایش تقریباً دو برابری هدایت الکتریکی خاک در پایان فصل نسبت به شروع آزمایش و همچنین افزایش 20 درصدی شوری خاک نسبت به شوری آب آبیاری گردید. مقدار بیشتر رطوبت در شرایط شور به دلیل سهل‌الوصول نبودن و کیفیت پایین آن برای گیاهان زراعی کاربردی ندارد، ولی گیاهان شورزیست مانند ارزن پادزهری، کوشیا، و سالیکورنیا در تناوب با جو احتمالاً می‌تواند از رطوبت باقیمانده در خاک استفاده کرده و با مصرف آب کمتر، محصول قابل قبولی داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Irrigation Water Salinity on Soil Moisture and Salinity during Growing Season, Barley Yield, and Its Water Productivity

نویسندگان [English]

  • H. Pirasteh-Anosheh 1
  • Y. Emam 2
  • S. A. Kazemeini 3
  • F. Dehghany 1
1 Assistant Professor., National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
2 Professor, College of Agriculture, Shiraz University, Shiraz, Iran
3 Associate Professor., College of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

In a 2-year field study, soil moisture and EC of soil extract (ECe) during growing season as well as grain and biological yield and water productivity of barley plant cv. Nosrat were monitored as affected by two salinity levels of irrigation water. Salinity levels of irrigation water were 2 and 12 dS.m-1. The results showed that salinity stress reduced grain, biological yield, and water productivity by, respectively, 36.0%, 52.1%, and 23.0% in the first year, and 48.4%, 69.1% and 31.7% in the second year. Higher losses in the second year were due to lower precipitation. Two-year averages of water productivity in terms of grain yields were 0.87 and 0.64 kg/m3, for 2 and 12 dS.m-1 water, respectively. In all days after imposing salinity treatment, soil moisture in control plots was significantly lower than saline plots. This difference was more distinct in the first depth and continued until the end of the growing season. On average, soil moisture levels in saline plots were higher than the control plots by 16.8% and 22.4% in the first and second years, respectively. In both years, ECe was also affected by salinity treatment, and this effect became more over time. The 2 and 12 dS m-1 salinity treatments decreased and increased ECe, respectively. The highest ECe values were observed at 160 days after planting in all three soil depths. Overall, in this condition, irrigation with saline water increased ECe about twice at the end of season compared to early growth, and increased ECe by 20% over EC of irrigation water. Greater soil moisture in saline conditions is not useful for crops because it is not easily available and has low quality, however, halophytes such as Panicum antidotale, Kochia spp., Salicornia spp. in rotation with barley might use this higher soil moisture and produce acceptable yield with less water.

کلیدواژه‌ها [English]

  • Drainage
  • saline soil
  • Saline water
  • Soil extract
  1. آقاخانی،ع.،ب. مصطفی‌زاده،م. حیدرپور،و ح.منصوری. 1385. تأثیرشوریآبآبیاریومیزانآبشوییبرکیفیت وکمیتزهآب.دومینکنفرانسمدیریتمنابعآب،دانشگاهصنعتیاصفهان: 129-123.
  2. امام، ی.، ا. حسینی، ن. رفیعی، و ه. پیرسته انوشه. 1392. رشد اولیه و جذب یون‌های سدیم و پتاسیم در ده رقم جو در شرایط تنش شوری. فیزیولوژی گیاهان زراعی. 19: 5-15.
  3. بنایی، م.ح.، ع. مومنی، م. بایبوردی و م.ج. ملکوتی. 1383. خاک­های ایران: تحولات نوین در شناسایی، مدیریت و بهره برداری. موسسه تحقیقات خاک و آب، انتشارات سنا، تهران، ایران، 500 صفحه.
  4. چراغی, س.ع.م. و ف. رسولی. ۱۳۸۸. جزء آبشویی و پروفیل شوری در اراضی تحت کشت گندم در شرایط شور استان فارس، دهمین سمینار سراسری آبیاری و کاهش تبخیر، کرمان، دانشگاه شهید باهنر.
  5. حوری، م.ع.، ع.ناصری، س.برومندنسب، و ع.کیانی. 1394. اثرکمآبیاریوشوریآبآبیاریبرتوزیعشوریخاکورشدرویشینهالهایخرما. نشریهحفاظتمنابعآبوخاک. 4: 13-1.
  6. روستا، م.ج.، م. سلطانی، ن. بشارت، و، سلطانی، م. صالحی، و غ. رنجبر. 1392. بررسی تأثیر سطوح مختلف پلیمر سوپرجاذب و شوری آب آبیاری بر نگهداری رطوبت خاک. مجله پژوهش آب ایران. 12: 244-241.
  7. فیضی، م.، و س. سعادت. 1394. اثر مدیریت آبیاری با آب شور بر شوری خاک در یک دورة تناوب زراعی. مدیریت آب و آبیاری. 5: 25-11.
  8. صالحی،م.،م. کافی،و ع.کیانی. 1390. اثرتنششوریوکمآبیبرتولیدزیستتودهکوشیا (Kochia scoparia) و روند شوری خاک.مجلهبهزراعینهالوبذر. 27: 433-417.
  9. نیریزی، س. 1387. مدیریت و کاربردآب لب‌شور و شور در کشاورزی پایدار. کارگاه ملی مدیریت استفاده از آب‌های شور. 17-1.
  10. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, Italy.
  11. Ashraf, M., and A. Khanum. 1997. Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stage. J. Agron. Crop Sci. 179: 39-51.
  12. Borg, H., and D.W. Grimes. 1986. Depth development of roots with time, an empirical description. Trans. Amer. Soc. Agric. Biol. Eng. 29: 194-197.
  13. Dosoky, A.K.R. 1999. Effect of saline water on some physical and chemical soil properties. M.Sc. Thesis, Moshtohor Zagazig University, Egypt.
  14. El-Boraie, F.M. 1997. A study on the water management under arid conditions. M.Sc. Thesis, Ain-Shams University, Egypt.
  15. Nemoto, Y., and T. Sasakuma. 2002. Differential stress responses of early salt stress responding genes in common wheat. Phytochem. 61: 129-133.
  16. Pirasteh-Anosheh, H., G. Ranjbar, H. Pakniyat, and Y. Emam. 2016. Physiological mechanisms of salt stress tolerance in plants; an overview. p. 141-160. In: M.M. Azooz, and P. Ahmad (eds.) Plant-environment interaction: responses and approaches to mitigate stress. John Wiley & Sons, London.
  17. Ragab, A.A.M.M., F.A. Hellal, and M. Abd El-Hady. 2008. Irrigation water salinity effects on some soil water constants and plant. 12th International Water Technology Conference, Alexandria, Egypt.
  18. Sharma, D.P., and K.V.G.K. Rao. 1998. Strategy for long term use of saline drainage water for irrigation in semi-arid regions. Soil Till. Res. 48: 287-295.
  19. Shiyab, S. 2011. Effects of NaCl application to hydroponic nutrient solution on macro and micro elements and protein content of hot pepper (Capsicum annuum L.). J. Food Agric. Environ. 9: 350-356.
  20. Tavakkoli E., P. Rengasamy, and G.K. McDonald. 2010. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61: 4449-4459.
  21. Xue, Z.Y., D.Y. Zhi, G.P. Xue, H. Zhang, Y.X. Zhao, and G.M. Xia. 2004. Enhanced salt tolerance of transgenic heat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167: 849–859.
  22. Zein El-Abedine, I.A., S.B. El-Amir, A.E. Abd-Allah, and A.A.M. Ragab. 2004. Influence of irrigation with saline drainage waters on some soil physico-chemical properties of the northern west area of Nile delta. Fayom. J. Agric. Res. Dev. 18: 133-142.