ارزیابی رابطه عملکرد با شاخصی ازکیفیت خاک در اراضی شالیزاری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آزمایشگاه، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت ایران

2 استادیار مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

3 استادیار مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی،آمل، ایران

4 کارشناس آزمایشگاه ، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

چکیده

برنج یکی از محصولات استراتژیک ایران بوده که تأمین­کننده درصد بالایی از کالری و پروتئین مورد نیاز مردم است. افزایش جمعیت و به دنبال آن افزایش نیازغذایی، شناخت روابط عملکرد و شرایط خاک را ضروری می­سازد. یکی از شاخص­هایی که شرایط خاک و ویژگی­های مربوط به آن را به خوبی نشان می­دهد شاخص کیفیت خاک[1] (SQI) است. در این پژوهش به منظور بهبود مدیریت صحیح اراضی شالیزاری منطقه گلدشت واقع دراستان مازندران،روابط بین عملکرد و کیفیت خاک بررسی شد. 128 نمونه مرکب خاک برای اندازه­گیری برخی از ویژگی­های فیزیکی و شیمیایی تهیه گردید. اندازه­گیری عملکرد دانه در هنگام برداشت محصول، در تمام کرت­ها در رطوبت 14درصد انجام شد. برای تعیین SQI، ابتدا ویژگی­هایی که بیشترین تأثیر را بر SQIمنطقه دارند، به کمک تجزیه به مولفه­های اصلی جدا گردید. از منطق فازی برای تبدیل ویژگی­های کمی خاک به رتبه­بندی کیفی استفاده شد و در نهایت با استفاده از مفهوم ضریب تغییرات، تلفیق شاخص­ها انجام شد. میانگین عملکرد در منطقه مورد بررسی 3498 کیلوگرم در هکتار و SQI بین 47/0 تا 97/0 در نوسان بود. بر اساس کلاس­بندی SQI مهمترین عامل محدودکننده کیفیت خاک، فسفر قابل­استفاده است. برخلاف انتظار نتایج حاکی از آن است که بین عملکرد و SQI در منطقه مورد بررسی همبستگی معنی­داری وجود ندارد (دلایل در بحث توضیح داده شد). مقایسه بین نقشه­های عملکرد و کیفیت خاک نشان می­دهد که وجود شرایط مناسب ویژگی­های خاک در کنار مدیریت صحیح مزرعه می­تواند در به حداکثر رساندن عملکرد برنج مؤثر باشد. مدیریت مناسب کشاورزان کاستی­ها و شرایط تاحدی نامناسب خاک را می­تواند ترمیم  نماید. این در حالی است که در بسیاری از موارد کیفیت مناسب خاک به تنهایی نمی­تواند کاستیهای مدیریت زراعی را جبران نماید.



[1] .Soil quality Index

کلیدواژه‌ها


عنوان مقاله [English]

Relationship between Yield and a Soil Quality Index in Paddy Fields

نویسندگان [English]

  • M. Shakouri Katigari 1
  • S. Mahmoud Soltani 2
  • M.T. Karbalai Aghamolki 3
  • F. Keshtekar Talemi 4
1 Senior Lab Expert, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
2 Assistant Professor, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
3 Assistant Professor, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
4 Laboratory Expert, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
چکیده [English]

Rice is one of the strategic agricultural crops in Iran and provides a high percentage of dietary calorie and protein of the people. With a rapidly increasing population and the consequent increase in food demands, it is necessary to know the relationship between rice yield and soil conditions. Therefore, the objective of the present study was to evaluate the relationships between yield and soil quality (SQ) in order to provide guidance regarding proper soil management practices for the sustainable development of Goldasht region paddy fields, in Mazandaran province. One hundred and twenty-eight surface soil samples were collected to measure some physical and chemical soil properties. At harvest time, grain yield was measured at 14% moisture content. Firstly, to determine the SQI, the characteristics with the highest effect on the SQI of the region were identified by the Principal Component Analysis. Fuzzy logic method was used to convert quantitative soil properties to qualitative ranking and, finally, the indices were combined using the concept of coefficient of variation. The average recorded rice grain yield of the studied area was 3498 kg ha-1 and SQI varied between 0.47 and 0.97. Contrary to expectation, there was no significant correlation between performance and SQI in the studied area (reasons are explained in discussion section). According to the results of SQI classification, available phosphorous is the most important limiting factor for soil quality in the area. Direct comparison among maps of yield and soil quality indices indicate that proper soil conditions along with proper management of the farm can be an effective solution to maximize rice yield. Thus, proper management by the farmers can remedy shortcomings and somewhat inappropriate soil conditions. However, in many cases, proper soil quality alone cannot compensate for crop management shortcomings.

کلیدواژه‌ها [English]

  • Principal component analysis
  • fuzzy logic
  • Rice yield
  1. توفیقی، ح.1377. بررسی پاسخ برنج به کود پتاسیم در خاک­های شالیزاری شمال ایران.مجله علوم کشاورزی،جلد 29،شماره 4.صفحات 869-883. کرج ، ایران
  2. حسینی، ف. 1393. روش تشخیص داده­های پرت. همایش ملی مهندسی رایانه و مدیریت فناوری اطلاعات.
  3. سلحشوردلیوند، ف.، اشرف صدرالدینی، ع.، امیرحسین ناظمی ، ا.ح.، دواتگر ، ن و نیشابوری، م.ر. 1392. شبیه سازی اثر همزمان تنش­های شوری و خشکی بر عملکرد دانه برنج رقم هاشمی. مجله علوم زراعی ایران. جلدپانزدهم، شماره 4  .320-336.
  4. حسنی‌پاک، ع.ا. 1377. زمین‌آمار (ژئواستاتیستیک). چاپ اول، انتشارات دانشگاه تهران، 314 صفحه.
  5. دواتگر ،ن.، شکوری کتیگری ،م و یزدانی، محمدرضا.1391. ارزیابی اثر عملیات تسطیح اراضی بر تغییرات مکانی برخی ویژگی­های مرتبط با حاصلخیزی خاک­های شالیزاری. نشریه دانش آب و خاک. جلد 22شماره2. 41-54.
  6. محمدی، ج. 1385. پدومتری (جلد دوم- آمار مکانی). انتشارات پلک، 453 صفحه.
  7. ملکوتی، م.ج و کاووسی، م. 1383. تغذیه متعادل برنج.
  8. میرنیا، خ و محمدیان، م. 1384. برنج اختلالات عناصرغذایی مدیریت عناصرغذایی. انتشارات دانشگاه مازندران. 436 صفحه.
  9. دواتگر، ن.، زارع،ا.، شکوری کتیگری،م.، رضائی، ل و همکاران. 1394. بررسی وضعیت حاصلخیزی خاک­های شالیزاری استان گیلان. نشریه مدیریت اراضی. جلد 3، شماره 1:1-13.
  10. Andrews, S.S., Karlen, D.L., and J.P. Mitchell. 2002. A comparison of soil quality indexing methods for vegetable production systems in northern California. Agric. Ecosyst. Environ. 90, 25–45.
  11. Armenis, E., Redmile-Gordon, M., Stelacci, A.m., Ciccarese, A and P. Rubino. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage research 130:91-98.
  12. Barah, B.C. and S. Pandey. 2005. Rainfed Rice Production Systems in Eastern India: An On-Farm Diagnosis and Policy Alternatives. Indian journal of agricultural Economics, 60(1), pp.110-136.
  13. Bates, Roger G., and K.V. Ashok.1973. Determination of pH: theory and practice. Journal of the Electrochemical Society120.8: 263C.
  14. Bouman B.A.M., Xiaoguang Y., Huaqi W., Zhimin W., Junfang Z and  C. Bin. 2006. Performance of aerobic rice varieties under irrigated conditions in North China, Field Crop. Res. 97:53-65.
  15. Bower, C.A., Reitemeier, R. F., and M. Fireman. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Sci. 73(4): 251-262.
  16. Bremner, J. M. 1965. Total Nitrogen 1." Methods of soil analysis. Part 2. Chemical and microbiological propertiesmethodsofsoilanb: 1149-1178.
  17. Burrough, P.A., MacMillan, R.A., and W.V. Deursen. 1992. Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of soil Science, 43(2): 193-210.
  18. Cahn, M.D., Hummel, J.W., and B.H. Brouer.1994. Spatial analysis of soil fertility for site-specific crop management. Soil. Sci. Soc. Am. J. 58:1240-1248.
  19. Cambardella, C. A., Moorman, T. B.,  Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F.,  and A. E. Konopka. 1994.  Field Scale Variability of Soil Properties in Central Iowa soils. Soil Science Society of America Journal, Vol. 58 (5): 1501-1511.
  20. Chaudhury, J., Mandal, U.K., Sharma, K.L., Ghosh, H., and B. Mandal. 2005. Assessing soil quality under long-term rice-based cropping system. Commun. Soil Sci. Plant Anal. 36: 1141–1161.
  21. Chen, Y.D., Wang, H.Y., Zhou, J.M., Xing, L., Zhu, B., Zhao, Y., and X.Q. Chen. 2013. Minimum data set for assessing soil quality in farmland of northeast China. Pedosphere 23: 564–576.
  22. Cheng, J., Ding, Ch., Li, X., Zhang, T., and X. Wang. 2016. Soil quality evaluation for navel orange production system in central subtropical china. Soil & Tillage research. 155: 225-232.
  23. Cherobin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena C.A., Davies, C.A and C.C. Cerri. 2014. Soil quality indexing strategies for evaluation sugarcane expansion in Brazil. DOI: 10.1371/Journal. Pone.0150860.
  24. Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A. L. C., Tormena, A.C., Davies C. A., and C. cerri. 2014. Soil Quality indexing stragies for evaluating sugarcane expansion in Brazil. Plos one 11(3): e0150860. Doi: 10.137/journal.pone.0150860.
  25. Clark, M.S., Horwath, W. R., Schennan, C., and K. M. Scow. 1998. Hanges in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90, 662-671.
  26. Confalonieri, R., Rosenmund, A.S and B. Baruth. 2009. An improved model to simulate rice yield. DOI: 10.1051/agro/2009005.
  27. Dahiya, I. S., J. Richter., and R. S. Malik. 1984. Soil spatial variability: A review. Intern. Trop. Agri., Vol. 11, no. 1, PP: 1-102.
  28. Delsouz Khaki, B., Honarjoo, N., Davatgar, N., Jalalian, A., and H. Torabi Golsefidi. 2017.  Assessment of Two Soil Fertility Indexes to Evaluate Paddy Fields for Rice Cultivation. Sustainability. 9(8), 1299.
  29. Doran, J.W., and B.T.  Parkin. 1994. Defining and assessing soil quality. In: Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A. (Eds.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc., Madison, WI, USA, Special Publication, 35: 3-21
  30. Doran, J.W., and M.R.  Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15: 3–11.
  31. Fan, T., Xu, M., Song, S., Zhou, G., and L. Ding. 2008. Trends in grain yields and soil organic C in a long‐term fertilization experiment in the China Loess Plateau. Journal of Plant Nutrition and Soil Science, 171(3): 448-457.
  32. Gee, G. W., and J. W. Bauder.1983. Particle-size analysis. p. 383-411. In A. Klute et.al. (ed). Methods of Soil analysis.part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  33. Govaerts, B., Sayre, K.D., and J.  Deckers. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 87: 163–174.
  34. Gray, Leslie C., and M. Philippe. 2003. Reconciling indigenous knowledge with scientific assessment of soil fertility changes in southwestern Burkina Faso. Geoderma 111.3-4: 425-437.
  35. Kremenov, O. 2004. Fuzzy Modeling of Soil Maps. Helsinki University of technology department of surveying. Pp 84.
  36. Larson, W.E. and F.J. Pierce. 1994. The dynamics of soil quality as a measure of sustainable management. p. 37-51. In: J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart (eds.) Defining Soil Quality for a Sustainable Environment. SSSA Spec. Pub. No. 35. ASA, CSSA, and SSSA, Madison, WI.
  37. Li, G. L., Chen, J., Sun, Z. Y., and M.Z. Tan. 2007. Establishing a minimum dataset for soil quality assessment based on soil properties and land-use changes. Acta Ecol. Sin. 27: 2715-2724.
  38. Li, P., Zhang, T., Wang, X and D. Yi. 2013. Development of biological soil quality indicator system for subtropical China. Soil & Tillage Research. 126: 112-118.
  39. Lindsay, Willard L., and A. Norvell. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper 1. Soil science society of America journal 42.3: 421-428.
  40. McGrath, D., and C. Zhang. 2003. Spatial distaribution of soil organic carbon concentrations in grassland of Ireland. Geoderma, 18: 1629-1639
  41. Moebius B.N., Idowu, O.J., Kimetu, J., Lehmann, J., Schindelbeck, R.R., van Es, H.M., Ngoze, S., and J.M. Kinyangi. 2011. Long-term soil quality degradation along a cultivation chronosequence in Western Kenya. Agriculture Ecosystems & Environment 141(1):86-99.
  42. Nasiri, M., and H. Pirdashti. 2003. Effect of level and time of nitrogen on yield component of rice rationing. Journal of Biological Sciences. 2: 217-222.
  43. Ortega, R. A., and O. A. Santibanez. 2007. Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput. Electron. Agric. 58: 49- 59.
  44. Pan, G., Smith, P., and W.Pan. 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129(1-3): 344-348.
  45. Rezaei, S.A., Gilkes, R.J., and S.S. Andrews. 2006. A minimum data set for assessing soil quality in rangelands. Geoderma 136: 229–234.
  46. Roades, J. D.1982. Soluble salts. p. 167-179. In A. L. Page et.al. (ed). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  47. Schoenholtz, S.H., van Miegroet, H., and J. A., Burger. 2000. A review of chemical physical properties as indicators of forest soil quality: challenges and opportunities. For.  Ecol. Manag, 138: 335-356.
  48. Schoning, I., Totsche, K.V., and I. Kogel-Knabner. 2006. Small Scale spatial variability of organic carbon stocks in litter and solum of a forested luvisol.  Geoderma. 136: 631-642.
  49. Sun, B., Zhou, Sh. and Q. Zhao. 2003. Evaluationof spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of suberopical china. Geoderma. 115: 85-99.
  50. Swarup A. 1985. Yield and nutrition of rice as influenced by pre-submergence and amendments in a highly sodic soil. Journal of the Indian Society of Soil Science. 33(2):352-7.
  51. Sys, I. C., Van Ranst, E., Debaveye, I. J., and F. Beenaert. 1993. Land evaluation (Part I-III). Crop Requirements. 199p. General Administration for Development Cooperation, Brussels. Belgium.
  52. Tesfahunegn, G. B. 2014. Soil quality assessment strategies for evaluating soil degradation in Northern Ethiopia. Applied and Environmental Soil Science. 1-14.
  53. Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., and S. G. Anantwar. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma. 282: 70-79.
  54. Velasquez, E., Lavelle, P and M Andrade. 2007. GISQ, a multifunctional indicator of soil quality, Soil Biology and Biochemistry. 39(12): 3066–3080.
  55. Walkley, A., and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37(1): 29-38
  56. Wang, Z., Chang, A. C., Wu, L., and D. Crowley. 2003. Assessing the soil quality of Long-term reclaimed wastewater-irrigated cropland. Geoderma. 114: 261-278.
  57. Warkentin, B.P. 1995. The changing concept of soil quality. J. Soil Water Conserv. 50, 226–228.
  58. Warkentin, B.P., and H.F., Fletcher. 1977. Soil quality for intensive agriculture. Proc Int SEM on Soil Environ and Fert Manage in Intensive Agric Soc Sci Soil and Manure. Natl Inst of Agric Sci, Tokyo, pp. 594–598.
  59. Webster, R. and Oliver, M.A. 2000. Geostatistics for Environmental Scientists. Wiley
  60. Xiong, W., I. Holman, D. Conway, E. Lin and Y. Li. 2008. A crop model cross calibration for use in region climate impacts studies. Ecol. Model. 213: 365-380.
  61. Yingbin, H., UChida, S. U., Huajun, T., Youqi, C and L. Jia. 2010. Application of Terra/MODIS images, TM images and weather data to assess the effect of cold damage on rice yield.  Int J Agric & Biol Eng. 3(2): 31.