رابطه هدایت هیدرولیکی اشباع با حدود آتربرگ و پارامترهای منحنی فشردگی محصور خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی پیشین کارشناسی ارشد، گروه خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا-همدان

2 دانشیار گروه خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا-همدان

3 استاد گروه خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا همدان

چکیده

در ایجاد توابعانتقالیخاک، یافتن متغیرهای جدید یک چالش اساسی برای بهبود تخمین خصوصیات هیدرولیکیخاک است. دراینتحقیقاز رفتار خاک تحت تراکم به‌عنوان متغیرهای جدید به‌همراه برخی خصوصیات پایه­ای خاکدر برآوردهدایتهیدرولیکیاشباع 120 نمونه خاکاز 5 استان مازندران، آذربایجان غربی و شرقی، کرمانشاه و همداناستفادهشد. هدایت هیدرولیکی اشباع توسطحدود آتربرگ (حدروانی، حد خمیری و حد انقباض) و پارامترهای منحنی فشردگی محصور به همراه خصوصیات پایه خاک (نسبت سیلت به شن، درصد رس و جرم مخصوص ظاهری) به‌عنوان تخمین‌گر در 3 مرحله تخمین زده شد. در مرحله اول فقط از خصوصیات پایه­ خاک به‌عنوان تخمین‌گر استفاده شد. توابع انتقالی ایجاد شده باروش رگرسیون نشان دادند کهدر مرحله 2  ورود پارامترهای منحنی فشردگی محصور به­همراه خصوصیات­ پایه­ خاک در توابع ایجاد شده و در مرحله 3 ورود تنها حدود آتربرگ به­همراه همان خصوصیات­ پایه­به­عنوان برآوردگر موجب بهبود نسبی در برآورد هدایت هیدرولیکی اشباع شدند. مقدار مجذور میانگین مربعات خطا(RMSE)  در قسمت آموزش برای مرحله 1، 2 و 3 به­ترتیب 624/0، 620/0 و 584/0 و برای آزمون به ترتیب 887/0، 821/0 و 829/0 به‌دست آمد. مقدار بهبود نسبی بر اساس معیار RMSE در مراحل دو و سه برای آموزش  به‌ترتیب 64/0% و 35/6 درصد و برای آزمون 45/7% و 53/6 درصد به‌دست آمد. بر اساس ضریب تبیین تعدیل شده (R2adj) ورود متغیرهای منحنی فشردگی محصور و یا حدود آتربرگ در جوار خصوصیات پایه خیلی در بهبود تخمین مؤثر واقع نشدند. نتایج نشان داد که صحت مدل در مرحله سه (بر اساس مقدارRMSE  و معیار اطلاعات آکایک) و قابلیت اعتماد مدل در مراحل دو و سه (بر اساس مقدارRMSE  و معیار اطلاعات آکایک) نسبت به مرحله اول بهبود یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Correlation of Saturated Hydraulic Conductivity with Atterberg Limits and Soil Confined Compression Curve Parameters

نویسندگان [English]

  • A. Sedaghat 1
  • H. Bayat 2
  • A. A. Safari Sinegani 3
1 Former MSc. Student of Soil Science, Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
2 Associate Professor., Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
3 Professor., Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
چکیده [English]

In developing new pedotransfer functions, finding new input variables is a major challenge for improving the estimation of soil hydraulic properties. In this study, behavior of soils under compaction along with some basic soil properties were used as new inputs for the estimation of saturated hydraulic conductivity (Ks) of 120 soil samples from five provinces, namely, Mazandaran, West and East Azarbaijan, Kermanshah, and Hamadan. The Ks was estimated using Atterberg limits (liquid limit, plastic limit and shrinkage limit), confined compression curve parameters and basic soil properties (silt/sand, clay percentage and bulk density) as predictors, at 3 steps. At the first step, only the basic soil properties were used as predictors. Pedotransfer functions developed by regression method showed that step 2, with the inputs of confined compression curve parameters, and step 3, with the inputs of only Atterberg limits, both along with basic soil properties, led to relative improvement in the Ks estimates.The root mean square error (RMSE) values in training and testing of the steps 1, 2, and 3 were 0.624, 0.620, 0.584 and 0.887, 0.821, 0.829, respectively. According to RMSE criterion, relative improvement values for the training of the second and third steps were 0.64% and 6.35% and for the testing of the second and third steps were 7.55% and 6.33%, respectively. According to the R2adj entering confined compression curve parameters or Atterberg limits along with the basic soil properties could not improve the estimations. Accuracy of the third step (according to RMSE and Akaike’s information criterion) and reliability of the second and third steps (according to RMSE and Akaike’s information criterion) were improved in comparison with the first step.

کلیدواژه‌ها [English]

  • soil compaction
  • Gompertz model
  • Pedotransfer functions
  • Akaike’s information criterion
  1. اوحدی، و.ر؛ حمیدی ، ص  و امیری،م., 1394. اثر آلاینده فلز سنگین بر ضریب تغییرات مقادیر شاخص تراکم، شاخص انبساط، و ضریب نفوذپذیری بنتونیت از منظر ریزساختاری. نشریه مهندسی عمران و محیط زیست دانشگاه تبریز.45: 7-17.
  2. بیات، ح؛ صداقت، آ؛ دواتگر، ن و صفری سنجانی، ع. 1393. کاربرد پارامترهای فراکتالی توزیع اندازه ذرات و خاکدانه­های ریز در برآورد هدایت هیدرولیکی اشباع خاک. نشریه پژوهش­های خاک (علوم خاک و آب).447:2-458
  3. عابدی ، ط؛ ، حسینی، س. ع و ر نقدی، ر. 1389.مطالعه رابطه خواص مکانیکی خاک و ایجاد لغزش در مسیر جاده جنگلی)مطالعه موردی: حوزه آبخیز چفرود استان گیلان(.پژوهشنامه مدیریت حوزه آبخیز. 1: 17-29
  4. صداقت، آ؛ بیات، ح و صفری سنجانی، ع.ا. 1395. رابطه بین ویژگی­های مکانیکی و منحنی هدایت هیدرولیکی غیراشباع خاک­ها. دانش آب و خاک.
  5. فولادمند،ح؛ سپاسخواه، ع و نیازی، ج. 1383 تخمین منحنی مشخصه آب خاک با استفاده از منحنی دانه­بندی و چگالی ظاهری خاک  مجله علوم و فنون کشاورزی و منابع طبیعی . 8: 1-13
  6. رضایی ارشد، ر؛ صیاد ، غ.ع؛ مظلوم، م؛ شرفا، م و جعفرنژادی، ع.ر. 1391.مقایسة روش­های شبکه عصبی مصنوعی و رگرسیونی برای پیش­بینی هدایت هیدرولیکی اشباع خاک­های استان خوزستان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. 60: 107-118
  7. زرین فر، س؛ قهرمان، ب؛ و داوری،ک.1390. ارائه توابع انتقالی جهت پیش بینی هدایت هیدرولیکی اشباع خاک­های گراولی با استفاده از رگرسیون حداقل مربعات جزئی. نشریه آب و خاک (علوم و صنایع کشاورزی) . 3: 617-624.
  8. ذوالفقاری، ز؛ محمدرضا مصدقی، م.ر؛ایوبی، ش و کلیشادی، ح. 1392. توابع انتقالی برای پیش بینی حدود آتربرگ خاک در مقیاس زمین نما در شهرستان کوهرنگ، استان چهارمحال و بختیاری .سیزدهمین کنگره علوم خاک ایران.
  9. مرادی،ف؛ خلیل مقدم، ب؛ جعفری، س و قربانی دشتکی، ش. 1390. برآورد نقطه ای و پارامتریک منحنی نگهداشت آب در خاک با استفاده از رگرسیون خطی چندگانه در چند کشت و صنعت استان خوزستان. پنجمین همایش ملی فن آوران نیشکر ایران.337-328.
  10. مهربانیان، م؛ تقی زاده مهرجردی، ر و دهقانی، ف. (1389) "بررسی کارایی توابع انتقالی جهت تخمین ظرفیت تبادل کاتیونی خاک های آهکی و گچی استان یزد،. مجله پژوهش­های حفاظت آب و خاک.  17: 113-117 
  11. نوابیان،م؛ لیاقت، ع؛ همایی، م. 1383. تخمین هدایت آبی اشباع با استفاده از توابع انتقالی. سومین کارگاه فنی زهکشی. 23 مهر ماه. 159- 170.
  12. Ajayi, A.E., Junior, M.d.S.D., Curi, N., Gontijo, I., Araujo-Junior, C.F., and A.I.V. Júnior. 2009a. Relation of strength and mineralogical attributes in Brazilian Latosols. Soil and Tillage Research. 102: 14-18.
  13. Ajayi, A.E., Junior, M.d.S.D., Curi, N., Junior, C.F.A., Souza, T.T.T., and A.I.V. Júnior 2009b. Strength attributes and compaction susceptibility of Brazilian Latosols. Soil and Tillage Research. 105: 122-127
  14. Akaike, H. 1974. New look at the statistical model identification. IEEE Transactions on Automatic Control. AC-19: 716-723.
  15. Al-Qinna, M.I and S.M. Jaber. 2013Predicting soil bulk density using advanced pedotransferfunctions in an arid environment. Transactions of the American Society of Agricultural andBiological Engineers.56: 963-76.
  16. Bayat, H., Sedaghat, A., Safari Sinegani,A.A., and A.S. Gregory.2015. Investigating the relationship between unsaturated hydraulic conductivity curve and confined compression curve. Journal of Hydrology 522: 353–368
  17. Baumgartl, T., and B. Koeck. 2004. Modeling volume change and mechanical properties with hydraulic models. Soil Science Society of America Journal. 68: 57-65.
  18. Benson, C., Zhai, H., and X.Wang. 1994. Estimating the hydraulic conductivity of compacted clay liners. Journal of Geotechnical Engineering, ASCE 120. 2: 366-387.
  19. Benson, C.H., and J.Trast. 1995. Hydrulic conductivity of thirteen compacted clays. 43: 669-681.
  20. Box, J. E., and S.Taylor. 1962.  Influence of soil bulk density on matric potential. Soil Science Society of America Journal. 26: 119-122
  21. Braud, I., Dantas-Antonino, A. C., and M. Vauclin. 1995. A stochastic approach to studying the influence of the spatial variability of soil hydraulic properties on surface fluxes, temperature and humidity, Journal of Hydrology, 165: 283-310
  22. British standard.1377. 1975. Methods for testing soil for civil engineering purposes. British Standard Institution, London. 134pp.
  23. Bruand, A., and I.Cousin. 1995 .Variation of textural porosity of a clay‐loam soil during compaction. European Journal of Soil Science. 46: 377-385.
  24. Campbell, G.S. 1985. Soil Physics with Basic. Transport Models for Soil-Plant Systems. Developments in soil Science, Vol. 14. Elsevier, Amsterdam.150p
  25. Casagrande, A. 1936. The determination of the pre-consolidation load and its practical significance. Proceedings of the international conference on soil mechanics and foundation engineering. Cambridge,
  26. Culley, J., and  W.Larson. 1987. Susceptibility to compression of a clay loam Haplaquoll. Soil Science Society of America Journal. 51: 562-567
  27. Dexter, A. 1988. Advances in characterization of soil structure. Soil and tillage research. 11: 199-238..
  28. Culley, J., and W.Larson. 1987. Susceptibility to compression of a clay loam Haplaquoll. Soil Science Society of America Journal. 51: 562-567.
  29. Cullet, J. L. B. 1993. Density and Compressibility. In: Carter, M.R, Soil sampling and Method of Analysis. Canadian Society of soil Science, Lewis Publishers, CRC Press, Boca ration FL, pp.529-539.
  30. Dolinar, B., and S.Skrabl. 2012. The matrix potential of fine-grained soils at the liquid limit. Engineering geology. 135: 48-51.                     
  31. Florian, S. C., and R. Horn. 2005. Modeling the soil water retention curve for conditions of variable porosity. Vadose Zone Journal. 4(3): 602-613.
  32. Fredlund, D.G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. John-Wiley & Sons Inc., New York.
  33. Ghanbarian, B,. Taslimitehrani, V and Y.A. Pachepsky. 2017. Accuracy of sample dimension- dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity. Catena. 149: 374-80.
  34. Gee, G. W., and D.Or. 2002. Particle- Size Analysis. In: Warren, .D. (ed) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc. pp .225-295.
  35. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115: 513–585.
  36. Grossman, R. B., and T. G.  Reinsch. 2002. Bulk density and linear extensibility. In: Warren, A.D. (ed) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc. 201-228.
  37. Handreck, K. A., and N. D. Black. .1984. Growing Media for Ornamental Plants and Turf. (NSW University Press: Kensington, NSW)
  38. Hicks, R. W. 2007. Soil engineering properties. In ‘Soils – their properties and management’. 3rd edn. (Eds P. E. V. Charman and B. W. Murphy.) pp. 192–205. (Oxford University Press: Melbourne.)
  39. Hills, R., Hudson, D.B., and P.J. Wierenga. 1992. Spatial variability at the Las Cruces trench siteIndirect methods for estimating the hydraulic properties of unsaturated soils. Univ. of California, Riverside. 529-538.
  40. Hocking, R. 2003. Methods and Applications of Linear Models. John Wiley & Sons, Hoboken, NJ.
  41. Horn, R. 1990. Aggregate characterization as compared to soil bulk properties. Soil and Tillage Research. 17: 265-289.
  42. Horn, R. 2004. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Science Society of America Journal . 68: 1131-1137.
  43. Hornberger. 1978. Empirical equations for some soil-hydraulic properties. Water Resources Resaarch.117: 311-314
  44. Hunt, N., and R.Gilkes. 1992. Farm Monitoring Handbook – A practical down-toearth manual for farmers and other land users. (University of Western Australia: Nedlands, W. A., and Land Management Society: Como, W. A.)
  45. Hwang, S. I., Lee, K.P., Lee, D.S., and Powers, S.E . 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal. 66:1143-1150
  46. Imhoff, S., Da Silva, A.P., and D.Fallow. 2004. Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal. 68: 17-24.
  47. Jaynes, D.B., and E. J.  Tyler. 1984. Using soil physical properties to estimate hydraulic conductivity. Soil Science. 138: 298-305.
  48. Keesstra, S,. Pereira, P,. Novara, A,. Brevik, E.C,. Azorin-Molina, C,. Parras-Alcántara, L,.Jordán, A,. and A.Cerdà. 2016. Effects of soil management techniques on soil water erosion inapricot orchards. Science of The Total Environment. 551: 357-66.
  49. Keller, T. and J.Arvidsson. 2007. Compressive properties of some Swedish and Danish structured agricultural soils measured in uniaxial compression tests. European Journal of Soil Science. 58: 1373-1381.
  50. Keller, T., Lamandé, M., Schjønning, P., and A.R.Dexter. 2011 Analysis of soil compression curves from uniaxial confined compression tests. Geoderma.;163:13-23
  51. Klute, A., and C.  Dirksen. 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1. Soil Sci. Soc. Am. Inc., Wisconsin, USA. 687–734.
  52. Koolen, A. 1974. A method for soil compactibility determination. Journal of agricultural engineering research. 19: 271-278.
  53. Larson, W. E., and F. J. Pierce. 1994. The dynamics of soil quality as a measure of sustainable management. p. 37–51. In J.W. Doran et al. (ed.) Defining soil quality for a sustainable environment. SSSA Spec. Publ. 35. SSSA and ASA, Madison, WI.
  54. Machiwal, D., Jha, M. K., and  Mal, B.C. 2006. Modelling Infiltration and quantifying Spatial SoilVariability in a Wasteland of Kharagpur, India. Biosystems Engineering. 95: 569–582.
  55. Mallants, D., Jaques, D., Tseng, P. H., Van Genuchten, M. T., and J. Feyen. 1997. Comparison of three hydraulic property measurement methods., Journal of hydrology, 199: 295-318
  56. Mills, J. J., Murphy, B. W., and H. G. Wickham. 1980. A study of three simple laboratory tests for the prediction of shrink-swell behaviour. Journal of Soil Conservation NSW 36: 77–82.
  57. Minasny, B. and McBratney, A. (2002). "The Method for Fitting Neural Network Parametric Pedotransfer Functions." Soil Science Society of America Journal. 66: 352-361.
  58. Mishra, A.K., Masami Ohtsubo, M. Li. L., and T.Higashi. 2011. Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soil-bentonite mixtures. Applied Clay Science. 52: 78–84
  59. Mishra, S., Parker, J.C., and N.S.Singhal. 1989. Estimating of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrol .108: 1-18.
  60. Mohanty, B., Ankeny, M.D., Horton, R., and R.S. Kanwar. 1994. Spatial analysis of hydraulic conductivity measured using disc infiltrometers. Water Resources Research. 30: 2489-2498.
  61. Nagaraj, T., Pandian, N.S., and P.S.R. Narasimha Raju. 1991. An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes. Indian Geotechnical Journal.21: 271-282
  62. Nielsen, D.R.J.W., Biggar, J.W. and Erh, K.T., 1973. Spatial variability of field-measured soil-water properties. California Agriculture, 42:215-259
  63. Paige, G., and D.Hillel. 1993. Comparison of three methods for assessing soil hydraulic properties. Soil Science. 155: 175-189
  64. Pandian, N.S., Nagaraj, T.S., and P.S.R. Narasimha Raju. 1995. Permeability and compressibility behaviour of bentonite-sand/soil mixes. Geotechnical Testing Journal. 18: 86–93.
  65. Parasuraman, K., Elshorbagy, A., and B. C. Si. 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Science Society of America Journal. 70: 1851-1859.
  66. Rawles, W. J., and D.Brakensiek. 1982. Estimating soil water retention from soil properties. Journal of the Irrigation and Drainage Division. 108: 166-171.
  67. Reynolds, W. D., and D.Elrick. 2002. Falling head soil core (tank) method. In: Warren, A. D. (Ed) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc. pp. 809-812.
  68. Rücknagel, J., Hofmann, B., Paul, R., Christen, O., and K.J. Hülsbergen. 2007. Estimating precompression stress of structured soils on the basis of aggregate density and dry bulk density. Soil and Tillage Research. 92: 213-220.
  69. Ryan, T.A., Joiner, B.L., and B.F.Ryan. 1976. Minitab student handbook Minitab Inc., State College, PA, USA.
  70. Santra, P., and B. S. Das. 2008. Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma. 146: 439-448.
  71. Schaap, M. G., Leij, F. J., and M. T. Van Genuchten. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions.journal of hydrology. 251:163-176
  72. Schaap, M. G., and F. J. Leij. 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research. 47: 37-42.
  73. Sedaghat, A., Bayat, H., and A. A.Safari Sinegani. 2016. Estimation of Soil Saturated Hydraulic Conductivity by Artificial Neural Networks Ensemble in Smectitic Soils.Eurasian Soil Science, 49: 347–357
  74. Tang, A.M., Cui, Y.J., Eslami, J., and P.Défossez. 2007. Analysing the form of the confined uniaxial compression curve of various soils. Geoderma. 148: 282-290.
  75. Tomasella, J., Pachepsky, Y., Crestana, S., and W.J. Rawls. 2003. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal. 67: 1085-1092.
  76. Ungaro, F., Calzolari, C., and E.Busoni. 2005. Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano–Veneta region of North Italy: water retention properties. Geoderma. 124: 293-317.
  77. Veiga, M.D., Horn, R., Reinert, D.J., and J.M. Reichert. 2007. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil and Tillage Research. 92: 104-113.
  78. Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., and R.Plagge. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma. 102: 275-297.
  79. Walczak, R., Moreno, F., Sławiński, C., Fernandez, E., and J.L. Arrue. 2006. Modeling of soil water retention curve using soil solid phase parameters. Journal of Hydrology. 329: 527-533.
  80. West, L.T., Abreu, M.A., and J.P.Bishop. 2008. Saturated hydraulic conductivity of soil in the Southern piedmont of Georgia, USA: Field evaluation and relation to horizon and landscape properties. Catena. 73: 174-179.
  81. Wösten J.H.M. 1997. Pedotransfer functions to evaluate soil quality. In: Gegorich, E.G., Carter, M.R. (Eds.), Soil Quality for Crop Production and Ecosystem Health. Developments in Soils Science, vol. 25, Elsesevier, Amesterdam 221-245.
  82. Wösten, J.H.M., Pachepsky, Y.A., and W.J. Rawls. 2001.  Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251: 123-150.
  83. Yi, X,. Li, G., and Y .Yin. 2016. Pedotransfer Functions for Estimating Soil Bulk Density: ACase Study in the Three-River Headwater Region of Qinghai Province, China.Pedosphere,26: 362-73.