ارزیابی کارآیی مدل‌های نفوذ آب به خاک تحت تأثیر روش های خاک‌ورزی و مدیریت بقایا در تناوب گندم-ذرت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، زرقان، ایران. پست الکترونیکی

2 دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

3 دانشیار بخش فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، زرقان، ایران

4 استاد سابق بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

فرآیند نفوذ آب به خاک در کارآمدی طراحی سامانه­های آبیاری از اهمیت خاصی برخوردار است. از سوی دیگر، پدیده نفوذ آب به خاک و تغییرات آن به خصوص در مناطق خشک و نیمه خشک تحت تأثیر مدیریت بقایای گیاهی و روش­های خاک­ورزی قرار می­گیرد. هدف اصلی این پژوهش برآورد ضرایب مدل­های مختلف نفوذ آب به خاک (کوستیاکوف، کوستیاکوف- لوئیز، فلیپ، هورتون و سازمان حفاظت خاک آمریکا) و کارآیی آن­ها تحت تأثیر روش­های مختلف خاک­ورزی (خاک­ورزی رایج، کم خاک­ورزی و بی خاک­ورزی) و مدیریت بقایا (حفظ بقایای به صورت ایستاده و حذف تمام بقایا از سطح خاک) بود.به این منظور، پژوهشی مزرعه­ای در سال 1395 و 1396 در منطقه زرقان استان فارس (بافت خاک لوم رسی سیلتی) با طرح کرت­های یک بار خُرد شده در قالب بلوک­های کامل تصادفی در تناوب گندم-ذرت با سه تکرار اجرا شد. فرآیند نفوذ آب به خاک برای هر محصول زراعی با استفاده از روش استوانه­های دوگانه با 3 تکرار مورد بررسی قرار گرفت. با استفاده از برازش هر مدل بر داده­های نفوذ تجربی بر اساس بهینه سازی غیر خطی، آماره­های ضریب تبیین (R2)، ریشه میانگین مربعات خطا (RMSE) و درصد کارآیی (EF) تعیین و مدل­ها، از نظر درستی برآورد نفوذ ارزیابی و رتبه بندی شدند. نتایج نشان داد که مدل کوستیاکوف- لوئیز در کشت گندم و حذف بقایا در سامانه­های خاک­ورزی رایج (با R2، RMSE و EF به ترتیب 99/0، 07/0 و 99/99) و کم خاک­ورزی (با R2، RMSE و EF به ترتیب 99/0، 13/0 و 99/99) و مدل هورتون در کشت ذرت و حفظ بقایا در سامانه بی خاک­ورزی (با R2، RMSE و EF به ترتیب 99/0، 14/0 و 70/99)، بهترین کارآیی را در برآورد نفوذ آب به خاک داشتند. در میان سامانه­های خاکورزی، مدل­های حفاظت خاک آمریکا، کوستیاکوف و فیلیپ در هر دو کشت از این نظر ناکارآمدترین بودند. بطورکلی، در مناطق خشک و نیمه­خشک از جمله زرقان در استان فارس جهت کمی­سازی فرآیند نفوذ آب به خاک مدل­های کوستیاکوف- لوئیز و هورتون به ترتیب در کشت گندم و ذرت می­تواند قابل توصیه باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Water Infiltration Models Efficiency Affected by Tillage Systems and Residue Management in Wheat-Corn Rotation

نویسندگان [English]

  • J. Mirzavand 1
  • A. M. Sameni 2
  • S. A. A. Moosavi 2
  • S. Afzalinia 3
  • N. A. Karimian 4
1 Assistant Professor, Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Zarghan
2 Associates Professor, Soil Science Department, School of Agriculture, Shiraz University
3 Associate Professor, Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Zarghan, Iran
4 Professor, Soil Science Department, School of Agriculture; Shiraz University
چکیده [English]

Water infiltration process into the soil is significantly affected by plant residue management and tillage systems, which are important factors for designing efficient irrigation systems, especially in arid and semi-arid regions. We aimed to estimate the coefficients of infiltration process models (including Kostiakov-Lewis, Kostiakov, Horton, SCS and Philip) and their performance under the effect of residue management (residue removal and retention) and different tillage systems (conventional tillage, reduced tillage, and no-tillage). The field experiment was conducted in wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation based on split-plot design with three replications, in Zarghan, Fars province, during 2016 and 2017. The water infiltration process was determined by double ring method in three replications for each crop. Then, the statistical criteria of determination coefficient (R2), root mean square error (RMSE), and efficiency model (EF) were defined by Solver tools and used to quantify and classify the infiltration process models. In wheat cultivation and residue removal, the highest performance for estimating of water infiltration was obtained by Kostiakov-Lewis model under conventional tillage (R2, RMSE, EF were 0.99, 0.07 and 99.99%, respectively). In the case of reduced tillage, R2, RMSE, EF were 0.99, 0.13, and 99.99%, respectively), while Horton’s model in corn cultivation and residue retention was the best model under no-tillage system (R2, RMSE, EF were 0.99, 0.14 and 99.70%, respectively). Among tillage systems, the lowest performance of models was observed for SCS, Kostiakov, and Philip models in a wheat-corn-wheat rotation. Overall, to quantifying water infiltration process into the soil under arid and semi-arid region such as Zarghan, it is recommendable to apply Kostiakov-Lewis and Horton models in, respectively, wheat and corn fields.

کلیدواژه‌ها [English]

  • Horton Model
  • Kostiakov-Lewis Model
  • Reduced tillage
  1. پرچمی عراقی، ف.، م. میرلطفی، ش. قربانی دشتکی و م. مهدیان. 1389. ارزیابی برخی مدل­های نفوذ آب به خاک در برخی کلاس­های بافتی و کاربری اراضی. نشریه آبیاری و زهکشی ایران. 23: 83-112.
  2. جوادی، ع.، م. مشعل و ح. ابراهیمیان. 1393. ارزیابی عملکرد و حساسیت معادلات نفوذ نسبت به شرایط اولیه و مرزی مختلف در آبیاری جویچه­ای. نشریه پژوهش آب در کشازی. 28: 787-799.
  3. جوادی، ع، ب. مصطفی­زاده­فرد، م. شایان­نژاد و م. ر. مصدقی. 1396. ارزیابی معادلات نفوذ آب به خاک در شرایط تلفیق کیفیت آب آبیاری، رطوبت اولیه خاک و بار آبی ثابت. نشریه پژوهش آب در کشاورزی. 31: 469-482.
  4. ثامنی، ع.، م. پاکجو، س. ع. ا. موسوی. و ع. ا. کامکارحقیقی. 1393. ارزیابی چند رابطه نفوذ آب به خاک با کاربرد آب­های شور و سدیمی. نشریه پژوهش آب در کشورزی. 28: 395-408.
  5. سدی خانی، م. ر. و ا. سهرابی. 1396. تأثیر کاربری اراضی بر کارآیی برخی از مدل­های نفوذ آب به خاک. نشریه مدیریت خاک و تولید پایدار. 7: 127-138.
  6. گودرزی، ل.، ع. م. آخوندعلی و ح. زارعی. 1391. ارزیابی و تعیین ضرایب مدل­های نفوذ آب به خاک در دشت اشترینان. نشریه حفاظت منابع آب و خاک. 3: 39-44.
  7. نشاط، ع.، و م. پاره­کار. 1386. مقایسه روش­های تعیین سرعت نفوذ عمودی آب در خاک. مجله علوم کشاورزی و منابع طبیعی. 14: 186-195.
  8. نیکچه، ا. ف.، م. وفاخواه، و ح. ر. صادقی. 1393. ارزیابی عملکرد مدل­های مختلف نفوذ تجمعی در کاربری­ها و بافت­های مختلف خاک با استفاده از شبیه ساز باران. نشریهدانشآبوخاک. 24: 183-193.
  9. نیک قلب­پور، م.، ح. اسدی، و م. گرجی. 1395. ارزیابی پراکنش مکانی سرعت نفوذ آب و ارتباط آن با برخی از ویژگی­های فیزیکی و شیمیایی خاک در منطقه کوهین. نشریه پژوهش های خاک. 30: 201-213.
  10. Alvarez, R., and H.S. Steinbach. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research. 104: 1–15
  11. Anahí Domínguez, J.C.B. 2015. Tillage effects on certain physical and hydraulic properties of a loamy soil under a crop rotation in a semi-arid region with a cool climate. Applied Soil Ecology. 98: 166-176.
  12. Argyrokastriti ‚I., and P. Kerkides. 2003. A note to the variable sorptivity infiltration equation. Water Resources Management. 17: 133-145.
  13. Chahinian, N., R. Moussa, P. Andrieux, and M. Voltz. 2005. Comparison of infiltration models to simulated flood events at the field scale. Journal of Hydrology. 306: 191-214.
  14. De Vita, P., E. Di Paolo, G. Fecondo, N. Di Fonzo, and M. Pisante. 2007. No tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil and Tillage Research. 92: 69-78.
  15. Fakuri, T., H. Emami, and B. Ghahreman. 2013. Estimation of cumulative penetration of water into the soil using the particle size distribution in different agricultural land uses. Journal of Water Research and Agriculture. 26: 379-390.
  16. Fan, R., X. Zhang, X. Yang, A. Liang, S. Jia, and X. Chen. 2013. Effects of tillage management on infiltration and preferential flow in a black soil, Northeast China. Chinese Geographical Science. 23: 312-320.
  17. Ghorbani Dashtaki, S.‚ M. Homaee‚ and M. Kouchakzadeh. 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management. 26: 68-74.
  18. Ghorbani Dashtaki, S.‚ M. Homaee‚ M.H. Mahdian, and M. Kouchakzadeh. 2009. Site-dependence performance of infiltration models. Water Resource Management. 23: 1573-1650.
  19. Goddard, T., M. Zoebisch, Y. Gan, W. Ellis, A. Watson, and S. Sombatpanit. 2008. No-till farming systems. World Association, Soil and Water Conservation (WASWC), Special, Publication No 3.
  20. Irena, M., B. Andrzej, S. Zuzanna, and D. Tomasz. 2012. The effect of various long-term tillage systems on soil properties and spring barley yield. Turkish Journal of Agriculture and Forestry. 36: 217-226.
  21. Krause, P., D. Boyle, and F. Base. 2005. Comparison of different efficiency criteria for hydrological model. Advances in Geosciences. 5: 89-97.
  22. Lal, R. 2009. Soil quality impacts of residue removal for bio-ethanol production. Soil and Tillage Research. 102: 233-241.
  23. Lampurlanés, J., and C. Cantero-Martínez. 2003. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agronomy Journal. 95: 526–536
  24. Larsson, M., and S. Eliasson. 2006. The influence of land-use change, root abundance and macrospores on saturated infiltration rate-a field study on Western Java, Indonesia. Water Resources Engineering. 186: 85-97.
  25. Licht, M., and M. Al-Kaisi. 2012. Less tillage for more water. Integrated Crop Management News, Iowa State University Extension and Outreach, Department of Agronomy.
  26. Lipiec, B.U.J. 2009. Spatial distribution of soil penetration resistance as affected by soil compaction: The fractal approach. Ecological Complexity. 3:256-271.
  27. Maria-Aparecida do, N.D.S., E. Panachuki, T.A. Sobrinho, P.T. Sanche de Oliveira, and D. B. Bicca Rodrigue. 2014. Water infiltration in an ultisol after cultivation of common bean. Revista Brasileira de Ciencia do Solo. 38: 1612-1620.
  28. Mazloom, H., and H. Fooladmand. 2013. Evaluation and determination of the coefficients of infiltration models in Marvdasht region, Fars province. International Journal of Advanced Biological and Biomedical Research. 1: 822-829.
  29. Mirzaee, S., A. Zolfaghari, M. Gorji, M. Dyck, and S. Ghorbani. 2014. Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Archives of Agronomy and Soil Science. 60: 681-693.
  30. Mishra, S.K.‚ J.V. Tyagi, and V.P. Singh. 2003. Comparison of infiltration models. Hydrogical Processes. 17: 2629–2652.
  31. Mulumba, L.N., and R. Lal. 2008. Mulching effects on selected soil physical properties. Soil and Tillage Research. 98: 106-111
  32. Ramazani, N., A.R. Barzegar, G. Sayyad, G.H. Haghnia, and Y. Mansuri. 2012. Effect of compaction on physical and hydraulic properties of a loamy soil. Journal of Water and Soil. 26: 214-225.
  33. Rashidi, M., and K. Seyfi. 2007. Field comparison of different infiltration models to determine the soil infiltration for border irrigation method. Journal of Agricultural & Environmental Science. 2: 628-632.
  34. Shukla, M.K.‚ R. Lal, L.B. Ownes, and P. Unkefer. 2003. Land use and management impacts on structure and infiltration characteristics of soils in the north Appalachian region of Ohio. Soil Science. 168: 167–177.
  35. Tomasini, B. A., A.C.T. Vitorino, M.V. Garbiate, C.M.A. Souza, and T. Alves Sobrinho. 2010. Water infiltration in soil cultivated with sugarcane: Under different cropping systems and models of adjustment of infiltration equations. Applied Engineering in Agriculture. 30: 1060-1070.
  36. Zolfaghari, A., S. Mirzaee, and M. Gorji. 2012. Comparison of different models for estimating cumulative infiltration. International Journal of Soil Science. 7: 108-115.