ارتباط شکل‌های مختلف پتاسیم با خصوصیات فیزیکو شیمیایی و کانی‌شناسی رسی خاک‌های دشت قره باغ در استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 استاد بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

3 دانشیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

4 استادیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

ارتباط نزدیکی بین ‌شکل‌های متفاوت پتاسیم در خاک و خصوصیات فیزیکوشیمیایی و کانی­های رسی خاک وجود دارد. این تحقیق به­منظور بررسی ارتباط بین شکل­های مختلف پتاسیم با خصوصیات فیزیکو شیمیایی و کانی­شناسی خاک‌های دشت قره­ باغ در استان فارس انجام گردید. برای این منظور 11 خاکرخ که دارای بیشترین تنوع بودند انتخاب و آزمایشات فیزیکو شیمیایی و ‌شکل‌های مختلف پتاسیم برای همه افق­ها و کانی­شناسی رسی برای افق سطحی و زیر سطحی خاکرخ­ها انجام گردید. شکل­ها­ی پتاسیم شامل پتاسیم محلول، تبادلی، غیرتبادلی، ساختمانی و کل تعیین شدند. مشاهدات صحرایی و بررسی نتایج آزمایشگاهی نشان داد که خاک‌های مورد مطالعه  در شش راسته انتی سولز، اینسپتی­سولز، مالی­سولز، آلفی­سولز،  هیستو­سولز و اریدی­سول قرار داشتند. کانی­های عمده­ی شناسایی شده شامل ایلیت، کائولینیت، ورمیکولیت، کلریت، اسمکتیت و پالیگورسکیت بودند. بطور کلی بجز پتاسیم محلول سایر شکل­های پتاسیم با آهک و شن همبستگی منفی و با رس و ظرفیت تبادل کاتیونی همبستگی مثبت داشتند. بیشترین مقدار پتاسیم محلول در منطقه مطالعه (4/42 میلی­گرم در کیلوگرم) در خاک‌های هیستوسول با درصد بالای کربن آلی (7/18 درصد) مشاهده گردید. کمترین مقدار تمام شکل­های پتاسیم در منطقه مورد مطالعه مربوط به خاک‌های انتی سول با بافت سبک (لوم شنی)و آهک بالا ( 5/87 درصد) بود. در این مطالعه، بیشترین پتاسیم تبادلی (6/286 میلی­گرم در کیلوگرم)، ساختمانی (1/6607 میلی­گرم در کیلوگرم) و کل (4/7309 میلی­گرم در کیلوگرم) در خاک‌های آلفی­سول  ثبت شد. همچنین، بیشینه پتاسیم غیرتبادلی (70/505 میلی­گرم در کیلوگرم) در خاک‌های اینسپتی­سول دارای خاصیت ورتیک با درصد بالای رس (6/40درصد) و آهک نسبتاً کم  (37 درصد) مشاهده گردید. در خاک­های مطالعه شده، کم بودن پتاسیم کل در هیستوسول ها باعث شد که درصد نسبت توزیع پتاسیم محلول، تبادلی و غیرتبادلی به پتاسیم کل بیشترین مقدار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship of Potassium Forms with Soil Physicochemical Properties and Clay Mineralogy in Ghrehbagh Plain, Fars Province

نویسندگان [English]

  • G. R. Zareian 1
  • M. H. Farpoor 2
  • M. M. Hejazi 3
  • A. Jafari 4
1 PhD Student, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Associate Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
4 Assistant Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Different forms of potassium (K) in soils are closely related to clay minerals and soil physicochemical properties. The present research was conducted to investigate the relation between soil physicochemical and mineralogical properties with different forms of K in soils of Ghrehbagh plain, Fars Province. Eleven soil pedons with the maximum soil variation were selected. Clay mineralogy was determined for surface and subsurface horizons of each pedon, where physicochemical characteristics and different forms of K were analyzed for all horizons. Soluble, exchangeable, non-exchangeable, and structural K were among different forms of potassium studied. Entisols, Inceptisols, Mollisols, Alfisols, Histosols, and Aridisols were identified. Illite, kaolinite, vermiculite, chlorite, smectite and palygorskite were the dominant clay minerals investigated. Different forms of K (with the exception of soluble form) showed negative correlation with sand and calcium carbonate contents, but a positive correlation with clay and cation exchange capacity (CEC). In the studied area, the highest amount of soluble K (42.4 mg.kg-1) was observed in Histosols with a high percentage of organic carbon (18.7%). Results of the study showed that the lowest amounts of all different forms of K were found in Entisols with sandy loam texture and high CaCO3 content (87.5%). On the other hand, the highest amount of exchangeable (286.6 mg.kg-1), structural (6607.1 mg.kg-1), and total (7309.4) K were observed in Alfisols. In the studied area, maximum non-exchangeable K (505.7 mg.kg-1) was measured in Inceptisols with Vertic properties, high clay (40.6 %) and moderately low CaCO3 (37%) contents. Total K contents in Histosols were low, that is why the ratios of soluble, exchangeable, and non-exchangeable K contents to total K were the highest among other studied soils.

کلیدواژه‌ها [English]

  • Clay minerals
  • Exchangeable K
  • Non-exchangeable K
  • Structural K
  • Soluble K
  1. آزادی ،ا.، م. باقرنژاد، ن. کریمیان، و ع. ابطحی، 1395. عصاره­گیری پی در پی پتاسیم غیرتبادلی و رابطه آن با ویژگی­های خاک، کانی شناسی و طبقه­بندی خاک در برخی خاک­های آهکی استان فارس. نشریه پژوهش­های خاک (علوم خاک و آب) جلد 30، شماره 2، صفحه: 199-187
  2. امامی، م.، ع. ابطحی، س. شاکری. 1393. بررسی رابطه ‌شکل‌های مختلف پتاسیم و کانی­های رس خاک در فیزیوگرافی­های مختلف منطقه اسکان عشایر نورآباد ممسنی، استان فارس. نشریه مدیریت خاک و تولید پایدارجلد چهارم، شماره دوم، صفحه: 222-205.
  3. حسن­شاهی، ح. (1368). مطالعات خاکشناسی نیمه تفضیلی دقیق دشت قره­باغ شیراز. موسسه تحقیقات خاک و آب .نشریه فنی شماره797. 108 صفحه.
  4. خرمالی، ف، ک. .نبی­الهی، ک. بازرگان و ک. افتخاری1386. بررسی وضعیت پتاسیم در راسته­های مختلف خاک ایستگاه تحقیقاتی کشاورزی خرکه کردستان. مجله علوم کشاورزی و منابع طبیعی. جلد چهاردهم، شماره پنجم. صفحه 9-1.
  5. Abtahi, A. 1980. Soil genesis as affected by topography and time in highly calcareous parent materials under semiarid conditions in Iran. Soil Sci. Soc. Am. J. 44(2): 329-336.
  6. Ajiboye, G.H. and J.A. Oqunwale. 2008. Potassium distribution in the sand, silt, and clay separation of soils developed over talc at Ejibia, Kogi state, Nigeria. World J. Agric. Sci. 4(6):709-716.
  7. Buckley, D.E., and R.E. Cranston. 1971. Atomic absorption analysis of 18 elements from a single decomposition of alum inosilicate. Chem. Geol. 273-284.
  8. Chapman, H. D., 1965. Cation exchange capacity. PP. 891-901. In: Black, C.A. (Ed.), Methods of Soil Analysis, part 2. Second Edition, American Society of Agronomy, Madison, WI.
  9. Darunsontaya, T., A. Suddhiprakarn, I. Kheoruenromne and R. J. Gilkes. 2010. The kinetics of potassium release to sodium tetra phenyl boron solution from the clay fraction of highly weathered soils. Applied Clay Science, 50(3):376-385.
  10. Dixon, J. B., and S.B. Weed. (1992). Minerals in soil environments. 2nd ed. Soil Sci. Soc. Am. Madison, Wisconsin, U.S.A. 1244p.
  11. Farpoor, M. H., and H. R. Krouse. (2008). Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils and sediments in Loot Desert, central Iran. Geoderma, 146(1): 283-290.
  12. Gee, G. W., and J. W. Bauder. 1986. Particle-size Analysis. PP. 383 – 411. In A.L. Page (ed.). Methods of soil analysis, Part1, Physical and mineralogical methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI.
  13. Goulding, K. W. T. 1987. Potassium fixation and release. In Proc., 20th Colloquium of the international Potash Institute, Berne, Switzerland, 20: 134- 156.
  14. Hosseinpour A., M. Kalbasi and H. Khademi. 2001. Kinetics of non-exchangeable K release in soil and soil components of Gilan Province. Iran Soil and Water Journal, 14: 112-119.
  15. Jackson, M.L. 1975. Soil Chemical Analysis Advanced Course. Department of Soils, College of Agriculture, University of Wisconsin, Madison, WI.
  16. Jalali, M. 2006. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma, 135: 63-71.
  17. Kayser, M., and j. Isselstein. 2005. Potassium cycling and losses in grassland systems: a review. Grass and Forage Science, 60(3): 213-224.
  18. Kittrick, J.A., and E.W. Hope. 1963. A procedure for the particle-size separation of soils for x-ray diffraction analysis. Soil Science, 96(5): 319-325.
  19. Khormali, F., and A. Abtahi. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, 38(4): 511-527.
  20. Loeppert, R. H., and D. L. Suarez. 1996. Carbonate and gypsum, PP: 437-474.In: Sparks, D. L. (ed) Methods of soil analysis, part3. Second Edition, American Society of Agronomy, Madison, WI.
  21. Martin, H. W. and D. L. Sparks. 1985. "On the behavior of non-exchangeable potassium in soils." Communications in Soil Science and Plant Analysis 16:133-162
  22. Mc Lean, E. O., and M. E. Watson. (1985). Soil measurements of plant-available potassium. Potassium in agriculture, (potassiuminagri), 277-308.
  23. Nabiollahy, K., F. Khormali, K. Bazargan and Sh. Ayoubi. 2006. Forms of K as a function of clay mineralogy and soil development. Clay Minerals, 41(3): 739-749
  24. Najafi-Ghiri, M., A. Abtahi, F. Jaberian and H.R. Owliaie. 2010a. Relationship between soil potassium forms and mineralogy in highly calcareous soils of southern Iran. Australian Journal of Basic and Applied Sciences, 4(3): 434-441.
  25. Najafi-Ghiri, M., A. Abtahi and F. Jaberian. 2010b.Factors affecting potassium release in calcareous soils of southern Iran. Soil Research, 49: 529–537.
  26. Najafi-Ghiri, M., A. Abtahi and F. Jaberian. 2012. Potassium release from sand, silt and clay fractions in calcareous soils of southern Iran. Arch. Agron. Soil Sci. 58(12): 1439-1425.
  27. Nelson, D. W., and L. Sommers. 1982. Total carbon, organic carbon, and organic matter. PP. 539- 579. Methods of soil analysis. Part 2. Chemical and microbiological properties, Second Edition, American Society of Agronomy, Madison, WI.
  28. Pratt, P.F. 1965. Potassium. 1022–1030. In: C. A. Black. Methods of Soil Analysis, part 2. American Society of Agronomy, Madison, WI.
  29. Rhodes, J.D. 1996. Salinity: electrical conductivity and total dissolved solids. PP: 417 – 435. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods. SSSA Book Series No. 5. ASA, Madison, WI.
  30. Sharply, A.N. 1989. Relationship between forms of potassium with mineralogy. Soil Sci. Soc. Am. J. 53: 1023-1027.
  31. Sharma, R. R., S. S. Mukhopadhyay and J. S. Sawhney. 2006. Distribution of potassium fractions in relation to landform in a Himalayan catena. Arch.Agron. Soil Sci. 52(4): 469-476.
  32. Simonsson, M., S. Hillier and I. Oborn. 2009. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma, 151(3): 109-120.
  33. Sparks, D.L. 2000. Bioavailability of soil potassium. Handbook of Soil Science, 38-52.
  34. Sparks, D.L., and P.M. Huang. 1985. Physical chemistry of soil potassium. Potassium in Agriculture, 16, 238-249.
  35. Srinivasarao, C., A. Swarup, A. Subba Rao, V. Raja Gopal .1999. Kinetics of nonexchangeable potassium release from a Tropaquept as influenced by long-term cropping, fertilization, and manuring. Australian journal of soil research. 33: 317-328.
  36. Srinivasarao, C., T. R. Rupa, A. Subba Rao, G. Ramesh and S. K. Bansal. 2006. Release kinetics of nonexchangeable potassium by different extractants from soils of varying mineralogy and depth. Communications in soil science and plant analysis, 37(3-4): 473-491.
  37. Srinivasarao, C., R. N. Singh, A. N. Ganeshamurthy, G. Singh and A. Masood. 2007. Fixation and recovery of added phosphorus and potassium in different soil types of pulse-growing regions of India. Commun. Soil Sci.Plant Anal. 38: 449-460
  38. Thompson, M. L., and L. Ukrainczyk. 2002. Micas. p. 431-466. In J.B. Dixon, and D. Schulze (ed.) Soil Mineralogy with Environmental Applications. Soil Science Society of America. Book Ser. 7. Madison, WI.
  39. Wang, H. Y., Q. H. Shen, J. M. Zhou, J. Wang, C. W. Du, and X. Q. Chen. 2011. Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant and soil, 343(1-2): 209-220.