اثر کاربرد لجن فاضلاب بر تغییرات زمانی حدود خمیرایی و پایداری خاکدانه‌ها در یک نمونه خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی‌ارشد، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

3 استادیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

کمبود ماده آلی در خاک­های مناطق­خشک و نیمه­خشک سبب کاهش کیفیت­ فیزیکی­ و افزایش رواناب و فرسایش خاک می­شود. کاربرد ترکیبات­آلی (لجن فاضلاب) در این مناطق می­تواند سبب بهبود ویژگی­های فیزیکی و شیمیایی خاک شود. در این تحقیق اثر کاربرد سطوح مختلف (صفر، 30 و 60 تن­در­هکتار) لجن فاضلاب در سه زمان 30, 60 و120 روز پس از خوابانیدن بر کربن آلی، پایداری خاکدانه­ها (میانگین وزنی و هندسی قطر خاکدانه­­ها) و حدود خمیرایی (رطوبت حد بالا و پایین خمیرایی و شاخص خمیرایی) خاک بررسی شد. کربن‌آلی خاک با افزایش سطوح کاربردی لجن فاضلاب افزایش یافت، اما با گذشت زمان در مقایسه با شاهد به طور معنی­داری کاهش یافت. پایداری خاکدانه­ها با کاربرد لجن­فاضلاب به­طور معنی­داری افزایش یافت ولی با گذشت 60 روز پس ازخوابانیدن به­طور معنی­داری نسبت به 30 روز کاهش یافت این درحالی است­که پس از 120 روز تفاوت معنی­داری با خوابانیدن به مدت 30 روز نداشت. رطوبت حد بالای خمیرایی خاک با کاربرد سطوح مختلف لجن فاضلاب افزایش یافت و با گذشت زمان، ابتدا افزایش و سپس کاهش یافت. در حالی­که رطوبت حد پایین خمیرایی با افزایش سطوح کاربرد لجن فاضلاب افزایش یافت و با گذشت زمان به­طور معنی­داری تغییر نیافت‌. شاخص خمیرایی خاک به­طور معنی­داری تحت تأثیر سطوح کاربرد لجن فاضلاب قرار نگرفت. اما در طول زمان ابتدا افزایش و سپس کاهش یافت. به طور کلی نتایج نشان داد افزودن لجن فاضلاب علاوه بر اینکه توانست سبب افزایش ماده آلی خاک و ظرفیت نگهداری آب خاک شود امکان شخم و عملیات خاک­ورزی را در رطوبت­های بیشتر و بدون فشردگی خاک فراهم آورد. البته بایستی در کاربرد لجن فاضلاب علاوه بر در نظر گرفتن اثرات مثبت لجن بر بهبود ویژگی­های فیزیکی خاک، مسائل اقتصادی و اثرات نامطلوب حاصل از کاربرد مقادیر زیاد لجن و خطرات زیست محیطی نیز مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of Sewage Sludge Application on Temporal Variation of Plasticity Limits and Aggregate Stability in a Calcareous Soil

نویسندگان [English]

  • F. Alavi 1
  • A. Sameni 2
  • A. A. Moosavi 3
چکیده [English]

Low organic matter in arid and semi-arid soils results in decreasing physical quality and increasing runoff and soil erosion. Application of organic compounds (sewage sludge) in these regions can improve soil physical and chemical properties. In the present research, effect of different levels of sewage sludge (0, 30 and 60 ton ha-1) on organic carbon, aggregate stability (mean weight diameter, MWD and geometric mean diameter, GMD), and plasticity limits (upper plastic limit, UPL, lower plastic limit, LPL, and plasticity index, PI) was studied over three time periods of 30, 60, and 120 days after application of sewage sludge. Soil organic carbon increased with increasing sewage sludge, but decreased significantly over time as compared to that of the control. Aggregate stability increased with sewage sludge application. Aggregate stability decreased 60 days after experiment as compared to that of 30 days, whereas, there was no significant difference between the aggregate stability at 120 and 30 days after the experiment. Upper plastic limit increased with increasing sewage sludge application. This criterion increased over time and decreased after that; whereas, LPL increased with sewage sludge application and did not vary over time. Sewage sludge did not affect PI significantly, while PI increased over time and then decreased. In general, results indicated that application of sewage sludge could increase soil organic matter and water holding capacity. Furthermore, with application of sewage sludge, soils can be tilled at higher moisture contents without any probable compaction. Of course, in addition to considering the positive effects of sewage sludge in improving soil physical properties, economical issues and the probable adverse effects of excessive application of sewage sludge and environmental risks should also be considered.

کلیدواژه‌ها [English]

  • mean weight diameter
  • Geometric mean diameter
  • Atterberg limits
  • Organic carbon
  • Upper and lower plastic limit
  • Plasticity index
  1. اصغری، ش. 1390. اثرات لجن فاضلاب پتروشیمی تبریز بر کربن آلی، شاخص های پایداری خاکدانه و حدود پایای یک خاک منطقه نیمه خشک. نشریه آب و خاک ( علوم و صنایع کشاورزی )، جلد 25، شماره 3،صفحات 530 تا539.
  2. بهره­مند، م.ر.، م. افیونی، م. ع. حاج عباسی و ی. رضایی نژاد.1381.اثر لجن فاضلاب بر برخی ویژگی­های فیزیکی خاک. علوم و فنون کشاورزی و منابع طبیعی، جلد 4، شماره 6، صفحات 8 تا11.
  3. زائری، ع. 1384. بررسی اثرات تجمعی و باقیماندة لجن فاضلاب بر حرکت املاح، رطوبت خاک و برخی خصوصیات فیزیکی خاک. پایا ن نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان. 
  4. شیرانی، ح.، م. ع. حاج عباسی،  م. افیونی و ح.  دشتی. 1389. اثر تجمعی لجن فاضلاب بر برخی ویژگی های فیزیکی و شیمیایی خاک.  آب و فاضلاب  ، شماره 3، صفحات 28 تا36.
  5. علوی، ف.، ع. ثامنی، و ع. ا. موسوی.a 1391 . اثرکاربردلجن فاضلاب برپایداری خاکدانه دریک خاک آهکی. اولین کنفرانس ملی راهکارهای دستیابی به توسعه پایدار، تهران، وزارت کشور.
  6. علوی، ف.، ع. ثامنی، و ع. ا. موسوی.b اثر کاربرد لجن فاضلاب بر آبگریزی خاک. همایش ملی خاک و کشاورزی پایدار، ملایر، دانشگاه ملایر.
  7. کسرایی، ر. و س. ساعدی. 1389 .  تأثیر لجن فاضلاب مجتمع پتروشیمی تبریز بر رشد گیاه گوجه فرنگی . آب و خاک، جلد 24، شماره 1، صفحات 10 تا 20.
  8. میرخانی، ر.، س. سعادت، م. شعبان پور شهرستانی، پ. آریا، و م. یگانه. 1386. برآورد حدود پایداری خاک با استفاده از ویژگی­های زود یافت. علوم و فنون کشاورزی و منابع طبیعی. جلد 21، شماره 2، صفحات 205 تا207.
  9. Aggelides, S. M. and A. Londra. 2000. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 71: 253-259.
  10. Arvidsson, J., T. Keller, and K. Gustafsson. 2004. Specific draught for mouldboard plough, chisel plough and disc harrow at different water contents. Soil Till. Res. 79(2): 221-231.
  11. Asghari, S., M. R. Neyshabouri, F. Abbasi, N. Aliasgharzad, and Sh. Oustan. 2009. The effects of four organic soil conditioners on aggregate stability pore size distribution and respiration activity in a sandy loam soil. Turk. J Agric For. 33: 47-55.
  12. ASTM D4318–10e1,   Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA (www.astm.org (last access 25/10/14)).
  13. Baldock, J. A. and P.N. Nelson, 2000. Soil organic matter. In: Sumner, M.E. (Ed.), Handbook of Soil Science. CRC Press, Boca Raton, FL, pp. B25–B71.
  14. Ball, B. C., D. J. Campbell and E. A. Hunter. 2000. Soil compactability in relation to physical and organic properties at 156 sites in UK. Soil Till. Res. 57: 83- 91.
  15. Bastida, F., E. Kandeler, J. L. Moreno, M. Ros, C. Garsia, and T. Hernandez. 2008. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 40: 318-329.
  16. Bhushan, L. and P.K. Sharma. 2002. Long-term effects of lantana (Lantana spp. L.) residue additions on soil physical properties under maize-wheat cropping. I. Soil consistency, surface cracking and clod formation. Soil Till. Res. 65: 157–167.
  17. Blanco-Canqui, H., R. Lal, W. M. Post, R. C. Izaurralde and M. J. Shipitalo. 2006. Organic carbon influences on soil particle density and rheological properties. Soil Sci. Soc. Am. J. 70: 1407-1414.
  18. Carter, M. R. 1993. Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publisher, CRC Press, 823 p.
  19. Chepil, W. S. 1962. A compact votary sieve and the importance of dry sieving in physical soil analysis. Soil Sci. Soc. Am. J. 26: 4-6.
  20. De Jong, E., D. F. Acton and H. B. Stonehouse. 1990. Estimating the Atterberg limits of southern Saskatchewan soils from texture and carbon contents. Can. J. Soil Sci. 70: 543-554.
  21. De Jong, E., D. F. Acton, and H. B. Stonehouse. 1990. Estimating the atterberg limits of southern Saskatchewan soils from texture andcarbon contents. Can. J. Soil Sci, 70(4): 543-554.
  22. Dexter, A. R., and N. A. Bird. 2001. Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil Till. Res. 57(4): 203-212.
  23. Fetton, G. K. 1995. Soil hydraulic properties on municipal Soil Waste. Transe ASAE. 38(3): 775-782.
  24. Hemmat, A., N. Aghilinategh, Y. Rezainejad, and M. Sadeghi. 2010. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Till. Res. 108: 43-50.
  25. Hillel, D. 1998. Environmental soil physics. Academic Press.
  26. Husein Malkawi, A. I., A. S. Alawneh, and O. T. Abu Safagah. 1999. Effect of organic matter on the physical and physicochemical properties of an illitic soil. Appl. Clay Sci. 14:257-278.
  27. Lal, R. and M. K. Shukla. 2004. Principles of Soil Physics. Marcel Dekker, Inc, New York, 682 p.
  28. Lima, D. L. D., S. M. Santos, H. W. Scherer, R. J. Schneider, A. C. Duarte, E. B. H. Santos and V. I. Esteves. 2009. Effects of organic and inorganic amendments on soil organic matter properties. Geoderma. 150: 38–45.
  29. Lin, D. F., H. L. Luo, D. H. Hsiao, and C. C. Yang. 2005. The effects of sludge ash on the strength of soft subgrade soil. J. Chinese Inst. Environ. Engin. 15: 1-10.
  30. Logan, T. J., B. J. Harrison, D. C. McAvoy, and J. A. Greff. 1996. Effect of Olestra in sewage sludge on soil physical properies. Environ. Qual. 25: 153-161.
  31. Mapfumo, E., and D. S.Chanasyk, 1998. Guidelines for safe trafficking and cultivation, and resistance-density-moisture relations of three disturbed soils from Alberta. Soil Till. Res. 46: 193-202.
  32. Mbagwu, J. S. C. and O. G. Abeh. 1998. Prediction of engineering properties of tropical soils using intrinsic pedological parameters. Soil Sci. 163: 93- 102.
  33. Miller, J. J., N. J. Sweetland, and C. Changs. 2002. Hydrological properties of a clay loam soil after Long-term cattle manure application. Environ. Qual. 31: 989-996.
  34. Mosaddeghi, M. R., M. A. Hajabbasi, A. Hemmat and M. Afyuni. 2000. Soil compactibility as affected by soil moisture content and farmyard manure in central Iran. Soil Till. Res. 55: 87–97.
  35. Mosaddeghi, M., M. A. Hajabbasi, A. Hemmat, and Afyni. 2000. Soil compactibility as affected by soil moisture content and farmy and manure in central Iran. Soil Till. Res. 55: 87-97.
  36. Mullin, C. E., D. A. Mcleod, K. H. Northcote, J. M. Thsdall, and I. M. Young. 1990. Hardsetting soils: behaviour,occurrence and management Advance. Soil Sci. 11: 37-108.
  37. Navas, A., J. Machın, and B. Navas. 1999. Use of biosolids to restore the natural vegetation cover on degraded soils in the badlands of Zaragoza. Bioresour. Technol. 69:199–205.
  38. Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. In: D. L. Sparks et al., (Eds.), Methods of Soil Analysis. Part III. 3rd PP. 61-1010, Soil Science Society of America Inc., American Society of Agronomy Madison, WI.
  39. Ojeda, G., E. Perfect, J. M. Alcaniz, and O. Ortiz. 2006. Fractal analysis of soil water hysteresis as influenced by sewage sludge application. Geoderma. 134: 386- 401.
  40. Pagliai, M., G. Guidi, M. Lamarka, M. Giachetti, and G. Lucamante. 1981. Effects of sewage sludges and compost on soil porosity and aggregation. Environ. Qual. 10: 556-561.
  41. Reynolds, W. D., B. T. Bowman, C. F. Dury, C. S. Tan, and X. Lu. 2002. Indicators of soil physical quality: density and storage parameter. Geoderma. 110: 131-146.
  42. Sanchez-Martin, M. J., M. Garcia-Delgado, L. F. Lorenzo, M. S. Rodriguez-Cruz, and M. Arienzo. 2007. Heavy metals in sewage sludge amended soils determined by sequential extractions as a function of incubation time of soils. Geoderma. 142: 262-273.
  43. Shirani, H., M. A. Hajabbasi, M. Afyuni, and A. Hemmat. 2002. Effect of farmyard and tillage systems on soil physical properties and corn yield in central Iran. Soil Till. Res. 68: 101-108.
  44. Silva, A. J. N., M. R. Ribeiro, F. G. Carvalho, V. N. Silva, and L. E. S. F. Silva. 2007. Impact of sugarcane cultivation on soil carbon fractions, consistence limits and aggregate stability of a Yellow Latosol in Northeast Brazil. Soil Till. Res. 94: 420- 424.
  45. Smith, C. W., A. Hadas, J. Dan and H. Koyumdjisky. 1985. Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel. Geoderma. 35: 47–65.
  46. Stehouwer, R. C. 2003. Land application of sewage sludge in Pennsylvania: Effects of biosolids on soil and crop quality. Environmental Soil Issues. Pennsylvania: Penn State College of Agriculture Science University Park.
  47. Terzaghi, A. W., B. Hoogmoed, and R. Miedema. 1988. The use of the wet workability limit to predict the land quality workability for some Uruguayan soils. Neth. J. Agric. Sci. 36: 91-103.
  48. Utomo, W. H. and A. R. Dexter. 1981. Soil friability. J. Soil Sci. 32: 203–213.
  49. Zhang, H., 1994. Organic matter incorporation affects mechanical properties of the soil aggregates. Soil Till. Res. 31: 263–275.